| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsum0diag2.1 |
|- ( x = k -> B = A ) |
| 2 |
|
fsum0diag2.2 |
|- ( x = ( k - j ) -> B = C ) |
| 3 |
|
fsum0diag2.3 |
|- ( ( ph /\ ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) ) -> A e. CC ) |
| 4 |
|
fznn0sub2 |
|- ( n e. ( 0 ... ( N - j ) ) -> ( ( N - j ) - n ) e. ( 0 ... ( N - j ) ) ) |
| 5 |
4
|
ad2antll |
|- ( ( ph /\ ( j e. ( 0 ... N ) /\ n e. ( 0 ... ( N - j ) ) ) ) -> ( ( N - j ) - n ) e. ( 0 ... ( N - j ) ) ) |
| 6 |
3
|
expr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( k e. ( 0 ... ( N - j ) ) -> A e. CC ) ) |
| 7 |
6
|
ralrimiv |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> A. k e. ( 0 ... ( N - j ) ) A e. CC ) |
| 8 |
1
|
eleq1d |
|- ( x = k -> ( B e. CC <-> A e. CC ) ) |
| 9 |
8
|
cbvralvw |
|- ( A. x e. ( 0 ... ( N - j ) ) B e. CC <-> A. k e. ( 0 ... ( N - j ) ) A e. CC ) |
| 10 |
7 9
|
sylibr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> A. x e. ( 0 ... ( N - j ) ) B e. CC ) |
| 11 |
10
|
adantrr |
|- ( ( ph /\ ( j e. ( 0 ... N ) /\ n e. ( 0 ... ( N - j ) ) ) ) -> A. x e. ( 0 ... ( N - j ) ) B e. CC ) |
| 12 |
|
nfcsb1v |
|- F/_ x [_ ( ( N - j ) - n ) / x ]_ B |
| 13 |
12
|
nfel1 |
|- F/ x [_ ( ( N - j ) - n ) / x ]_ B e. CC |
| 14 |
|
csbeq1a |
|- ( x = ( ( N - j ) - n ) -> B = [_ ( ( N - j ) - n ) / x ]_ B ) |
| 15 |
14
|
eleq1d |
|- ( x = ( ( N - j ) - n ) -> ( B e. CC <-> [_ ( ( N - j ) - n ) / x ]_ B e. CC ) ) |
| 16 |
13 15
|
rspc |
|- ( ( ( N - j ) - n ) e. ( 0 ... ( N - j ) ) -> ( A. x e. ( 0 ... ( N - j ) ) B e. CC -> [_ ( ( N - j ) - n ) / x ]_ B e. CC ) ) |
| 17 |
5 11 16
|
sylc |
|- ( ( ph /\ ( j e. ( 0 ... N ) /\ n e. ( 0 ... ( N - j ) ) ) ) -> [_ ( ( N - j ) - n ) / x ]_ B e. CC ) |
| 18 |
17
|
fsum0diag |
|- ( ph -> sum_ j e. ( 0 ... N ) sum_ n e. ( 0 ... ( N - j ) ) [_ ( ( N - j ) - n ) / x ]_ B = sum_ n e. ( 0 ... N ) sum_ j e. ( 0 ... ( N - n ) ) [_ ( ( N - j ) - n ) / x ]_ B ) |
| 19 |
|
nfcsb1v |
|- F/_ x [_ k / x ]_ B |
| 20 |
19
|
nfel1 |
|- F/ x [_ k / x ]_ B e. CC |
| 21 |
|
csbeq1a |
|- ( x = k -> B = [_ k / x ]_ B ) |
| 22 |
21
|
eleq1d |
|- ( x = k -> ( B e. CC <-> [_ k / x ]_ B e. CC ) ) |
| 23 |
20 22
|
rspc |
|- ( k e. ( 0 ... ( N - j ) ) -> ( A. x e. ( 0 ... ( N - j ) ) B e. CC -> [_ k / x ]_ B e. CC ) ) |
| 24 |
10 23
|
mpan9 |
|- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ k e. ( 0 ... ( N - j ) ) ) -> [_ k / x ]_ B e. CC ) |
| 25 |
|
csbeq1 |
|- ( k = ( ( 0 + ( N - j ) ) - n ) -> [_ k / x ]_ B = [_ ( ( 0 + ( N - j ) ) - n ) / x ]_ B ) |
| 26 |
24 25
|
fsumrev2 |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> sum_ k e. ( 0 ... ( N - j ) ) [_ k / x ]_ B = sum_ n e. ( 0 ... ( N - j ) ) [_ ( ( 0 + ( N - j ) ) - n ) / x ]_ B ) |
| 27 |
|
elfz3nn0 |
|- ( j e. ( 0 ... N ) -> N e. NN0 ) |
| 28 |
27
|
ad2antlr |
|- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ n e. ( 0 ... ( N - j ) ) ) -> N e. NN0 ) |
| 29 |
|
elfzelz |
|- ( j e. ( 0 ... N ) -> j e. ZZ ) |
| 30 |
29
|
ad2antlr |
|- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ n e. ( 0 ... ( N - j ) ) ) -> j e. ZZ ) |
| 31 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
| 32 |
|
zcn |
|- ( j e. ZZ -> j e. CC ) |
| 33 |
|
subcl |
|- ( ( N e. CC /\ j e. CC ) -> ( N - j ) e. CC ) |
| 34 |
31 32 33
|
syl2an |
|- ( ( N e. NN0 /\ j e. ZZ ) -> ( N - j ) e. CC ) |
| 35 |
28 30 34
|
syl2anc |
|- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ n e. ( 0 ... ( N - j ) ) ) -> ( N - j ) e. CC ) |
| 36 |
|
addlid |
|- ( ( N - j ) e. CC -> ( 0 + ( N - j ) ) = ( N - j ) ) |
| 37 |
35 36
|
syl |
|- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ n e. ( 0 ... ( N - j ) ) ) -> ( 0 + ( N - j ) ) = ( N - j ) ) |
| 38 |
37
|
oveq1d |
|- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ n e. ( 0 ... ( N - j ) ) ) -> ( ( 0 + ( N - j ) ) - n ) = ( ( N - j ) - n ) ) |
| 39 |
38
|
csbeq1d |
|- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ n e. ( 0 ... ( N - j ) ) ) -> [_ ( ( 0 + ( N - j ) ) - n ) / x ]_ B = [_ ( ( N - j ) - n ) / x ]_ B ) |
| 40 |
39
|
sumeq2dv |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> sum_ n e. ( 0 ... ( N - j ) ) [_ ( ( 0 + ( N - j ) ) - n ) / x ]_ B = sum_ n e. ( 0 ... ( N - j ) ) [_ ( ( N - j ) - n ) / x ]_ B ) |
| 41 |
26 40
|
eqtrd |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> sum_ k e. ( 0 ... ( N - j ) ) [_ k / x ]_ B = sum_ n e. ( 0 ... ( N - j ) ) [_ ( ( N - j ) - n ) / x ]_ B ) |
| 42 |
41
|
sumeq2dv |
|- ( ph -> sum_ j e. ( 0 ... N ) sum_ k e. ( 0 ... ( N - j ) ) [_ k / x ]_ B = sum_ j e. ( 0 ... N ) sum_ n e. ( 0 ... ( N - j ) ) [_ ( ( N - j ) - n ) / x ]_ B ) |
| 43 |
|
elfz3nn0 |
|- ( n e. ( 0 ... N ) -> N e. NN0 ) |
| 44 |
43
|
adantl |
|- ( ( ph /\ n e. ( 0 ... N ) ) -> N e. NN0 ) |
| 45 |
|
addlid |
|- ( N e. CC -> ( 0 + N ) = N ) |
| 46 |
44 31 45
|
3syl |
|- ( ( ph /\ n e. ( 0 ... N ) ) -> ( 0 + N ) = N ) |
| 47 |
46
|
oveq1d |
|- ( ( ph /\ n e. ( 0 ... N ) ) -> ( ( 0 + N ) - n ) = ( N - n ) ) |
| 48 |
47
|
oveq2d |
|- ( ( ph /\ n e. ( 0 ... N ) ) -> ( 0 ... ( ( 0 + N ) - n ) ) = ( 0 ... ( N - n ) ) ) |
| 49 |
47
|
oveq1d |
|- ( ( ph /\ n e. ( 0 ... N ) ) -> ( ( ( 0 + N ) - n ) - j ) = ( ( N - n ) - j ) ) |
| 50 |
49
|
adantr |
|- ( ( ( ph /\ n e. ( 0 ... N ) ) /\ j e. ( 0 ... ( N - n ) ) ) -> ( ( ( 0 + N ) - n ) - j ) = ( ( N - n ) - j ) ) |
| 51 |
43
|
ad2antlr |
|- ( ( ( ph /\ n e. ( 0 ... N ) ) /\ j e. ( 0 ... ( N - n ) ) ) -> N e. NN0 ) |
| 52 |
|
elfzelz |
|- ( n e. ( 0 ... N ) -> n e. ZZ ) |
| 53 |
52
|
ad2antlr |
|- ( ( ( ph /\ n e. ( 0 ... N ) ) /\ j e. ( 0 ... ( N - n ) ) ) -> n e. ZZ ) |
| 54 |
|
elfzelz |
|- ( j e. ( 0 ... ( N - n ) ) -> j e. ZZ ) |
| 55 |
54
|
adantl |
|- ( ( ( ph /\ n e. ( 0 ... N ) ) /\ j e. ( 0 ... ( N - n ) ) ) -> j e. ZZ ) |
| 56 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
| 57 |
|
sub32 |
|- ( ( N e. CC /\ n e. CC /\ j e. CC ) -> ( ( N - n ) - j ) = ( ( N - j ) - n ) ) |
| 58 |
31 56 32 57
|
syl3an |
|- ( ( N e. NN0 /\ n e. ZZ /\ j e. ZZ ) -> ( ( N - n ) - j ) = ( ( N - j ) - n ) ) |
| 59 |
51 53 55 58
|
syl3anc |
|- ( ( ( ph /\ n e. ( 0 ... N ) ) /\ j e. ( 0 ... ( N - n ) ) ) -> ( ( N - n ) - j ) = ( ( N - j ) - n ) ) |
| 60 |
50 59
|
eqtrd |
|- ( ( ( ph /\ n e. ( 0 ... N ) ) /\ j e. ( 0 ... ( N - n ) ) ) -> ( ( ( 0 + N ) - n ) - j ) = ( ( N - j ) - n ) ) |
| 61 |
60
|
csbeq1d |
|- ( ( ( ph /\ n e. ( 0 ... N ) ) /\ j e. ( 0 ... ( N - n ) ) ) -> [_ ( ( ( 0 + N ) - n ) - j ) / x ]_ B = [_ ( ( N - j ) - n ) / x ]_ B ) |
| 62 |
48 61
|
sumeq12rdv |
|- ( ( ph /\ n e. ( 0 ... N ) ) -> sum_ j e. ( 0 ... ( ( 0 + N ) - n ) ) [_ ( ( ( 0 + N ) - n ) - j ) / x ]_ B = sum_ j e. ( 0 ... ( N - n ) ) [_ ( ( N - j ) - n ) / x ]_ B ) |
| 63 |
62
|
sumeq2dv |
|- ( ph -> sum_ n e. ( 0 ... N ) sum_ j e. ( 0 ... ( ( 0 + N ) - n ) ) [_ ( ( ( 0 + N ) - n ) - j ) / x ]_ B = sum_ n e. ( 0 ... N ) sum_ j e. ( 0 ... ( N - n ) ) [_ ( ( N - j ) - n ) / x ]_ B ) |
| 64 |
18 42 63
|
3eqtr4d |
|- ( ph -> sum_ j e. ( 0 ... N ) sum_ k e. ( 0 ... ( N - j ) ) [_ k / x ]_ B = sum_ n e. ( 0 ... N ) sum_ j e. ( 0 ... ( ( 0 + N ) - n ) ) [_ ( ( ( 0 + N ) - n ) - j ) / x ]_ B ) |
| 65 |
|
fzfid |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( 0 ... k ) e. Fin ) |
| 66 |
|
elfzuz3 |
|- ( j e. ( 0 ... k ) -> k e. ( ZZ>= ` j ) ) |
| 67 |
66
|
adantl |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> k e. ( ZZ>= ` j ) ) |
| 68 |
|
elfzuz3 |
|- ( k e. ( 0 ... N ) -> N e. ( ZZ>= ` k ) ) |
| 69 |
68
|
adantl |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> N e. ( ZZ>= ` k ) ) |
| 70 |
69
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> N e. ( ZZ>= ` k ) ) |
| 71 |
|
elfzuzb |
|- ( k e. ( j ... N ) <-> ( k e. ( ZZ>= ` j ) /\ N e. ( ZZ>= ` k ) ) ) |
| 72 |
67 70 71
|
sylanbrc |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> k e. ( j ... N ) ) |
| 73 |
|
elfzelz |
|- ( j e. ( 0 ... k ) -> j e. ZZ ) |
| 74 |
73
|
adantl |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> j e. ZZ ) |
| 75 |
|
elfzel2 |
|- ( k e. ( 0 ... N ) -> N e. ZZ ) |
| 76 |
75
|
ad2antlr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> N e. ZZ ) |
| 77 |
|
elfzelz |
|- ( k e. ( 0 ... N ) -> k e. ZZ ) |
| 78 |
77
|
ad2antlr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> k e. ZZ ) |
| 79 |
|
fzsubel |
|- ( ( ( j e. ZZ /\ N e. ZZ ) /\ ( k e. ZZ /\ j e. ZZ ) ) -> ( k e. ( j ... N ) <-> ( k - j ) e. ( ( j - j ) ... ( N - j ) ) ) ) |
| 80 |
74 76 78 74 79
|
syl22anc |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> ( k e. ( j ... N ) <-> ( k - j ) e. ( ( j - j ) ... ( N - j ) ) ) ) |
| 81 |
72 80
|
mpbid |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> ( k - j ) e. ( ( j - j ) ... ( N - j ) ) ) |
| 82 |
|
subid |
|- ( j e. CC -> ( j - j ) = 0 ) |
| 83 |
74 32 82
|
3syl |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> ( j - j ) = 0 ) |
| 84 |
83
|
oveq1d |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> ( ( j - j ) ... ( N - j ) ) = ( 0 ... ( N - j ) ) ) |
| 85 |
81 84
|
eleqtrd |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> ( k - j ) e. ( 0 ... ( N - j ) ) ) |
| 86 |
|
simpll |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> ph ) |
| 87 |
|
fzss2 |
|- ( N e. ( ZZ>= ` k ) -> ( 0 ... k ) C_ ( 0 ... N ) ) |
| 88 |
69 87
|
syl |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( 0 ... k ) C_ ( 0 ... N ) ) |
| 89 |
88
|
sselda |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> j e. ( 0 ... N ) ) |
| 90 |
86 89 10
|
syl2anc |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> A. x e. ( 0 ... ( N - j ) ) B e. CC ) |
| 91 |
|
nfcsb1v |
|- F/_ x [_ ( k - j ) / x ]_ B |
| 92 |
91
|
nfel1 |
|- F/ x [_ ( k - j ) / x ]_ B e. CC |
| 93 |
|
csbeq1a |
|- ( x = ( k - j ) -> B = [_ ( k - j ) / x ]_ B ) |
| 94 |
93
|
eleq1d |
|- ( x = ( k - j ) -> ( B e. CC <-> [_ ( k - j ) / x ]_ B e. CC ) ) |
| 95 |
92 94
|
rspc |
|- ( ( k - j ) e. ( 0 ... ( N - j ) ) -> ( A. x e. ( 0 ... ( N - j ) ) B e. CC -> [_ ( k - j ) / x ]_ B e. CC ) ) |
| 96 |
85 90 95
|
sylc |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> [_ ( k - j ) / x ]_ B e. CC ) |
| 97 |
65 96
|
fsumcl |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> sum_ j e. ( 0 ... k ) [_ ( k - j ) / x ]_ B e. CC ) |
| 98 |
|
oveq2 |
|- ( k = ( ( 0 + N ) - n ) -> ( 0 ... k ) = ( 0 ... ( ( 0 + N ) - n ) ) ) |
| 99 |
|
oveq1 |
|- ( k = ( ( 0 + N ) - n ) -> ( k - j ) = ( ( ( 0 + N ) - n ) - j ) ) |
| 100 |
99
|
csbeq1d |
|- ( k = ( ( 0 + N ) - n ) -> [_ ( k - j ) / x ]_ B = [_ ( ( ( 0 + N ) - n ) - j ) / x ]_ B ) |
| 101 |
100
|
adantr |
|- ( ( k = ( ( 0 + N ) - n ) /\ j e. ( 0 ... k ) ) -> [_ ( k - j ) / x ]_ B = [_ ( ( ( 0 + N ) - n ) - j ) / x ]_ B ) |
| 102 |
98 101
|
sumeq12dv |
|- ( k = ( ( 0 + N ) - n ) -> sum_ j e. ( 0 ... k ) [_ ( k - j ) / x ]_ B = sum_ j e. ( 0 ... ( ( 0 + N ) - n ) ) [_ ( ( ( 0 + N ) - n ) - j ) / x ]_ B ) |
| 103 |
97 102
|
fsumrev2 |
|- ( ph -> sum_ k e. ( 0 ... N ) sum_ j e. ( 0 ... k ) [_ ( k - j ) / x ]_ B = sum_ n e. ( 0 ... N ) sum_ j e. ( 0 ... ( ( 0 + N ) - n ) ) [_ ( ( ( 0 + N ) - n ) - j ) / x ]_ B ) |
| 104 |
64 103
|
eqtr4d |
|- ( ph -> sum_ j e. ( 0 ... N ) sum_ k e. ( 0 ... ( N - j ) ) [_ k / x ]_ B = sum_ k e. ( 0 ... N ) sum_ j e. ( 0 ... k ) [_ ( k - j ) / x ]_ B ) |
| 105 |
|
vex |
|- k e. _V |
| 106 |
105 1
|
csbie |
|- [_ k / x ]_ B = A |
| 107 |
106
|
a1i |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> [_ k / x ]_ B = A ) |
| 108 |
107
|
sumeq2dv |
|- ( j e. ( 0 ... N ) -> sum_ k e. ( 0 ... ( N - j ) ) [_ k / x ]_ B = sum_ k e. ( 0 ... ( N - j ) ) A ) |
| 109 |
108
|
sumeq2i |
|- sum_ j e. ( 0 ... N ) sum_ k e. ( 0 ... ( N - j ) ) [_ k / x ]_ B = sum_ j e. ( 0 ... N ) sum_ k e. ( 0 ... ( N - j ) ) A |
| 110 |
|
ovex |
|- ( k - j ) e. _V |
| 111 |
110 2
|
csbie |
|- [_ ( k - j ) / x ]_ B = C |
| 112 |
111
|
a1i |
|- ( ( k e. ( 0 ... N ) /\ j e. ( 0 ... k ) ) -> [_ ( k - j ) / x ]_ B = C ) |
| 113 |
112
|
sumeq2dv |
|- ( k e. ( 0 ... N ) -> sum_ j e. ( 0 ... k ) [_ ( k - j ) / x ]_ B = sum_ j e. ( 0 ... k ) C ) |
| 114 |
113
|
sumeq2i |
|- sum_ k e. ( 0 ... N ) sum_ j e. ( 0 ... k ) [_ ( k - j ) / x ]_ B = sum_ k e. ( 0 ... N ) sum_ j e. ( 0 ... k ) C |
| 115 |
104 109 114
|
3eqtr3g |
|- ( ph -> sum_ j e. ( 0 ... N ) sum_ k e. ( 0 ... ( N - j ) ) A = sum_ k e. ( 0 ... N ) sum_ j e. ( 0 ... k ) C ) |