Step |
Hyp |
Ref |
Expression |
1 |
|
fsum0diag.1 |
|- ( ( ph /\ ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) ) -> A e. CC ) |
2 |
|
fzfid |
|- ( ph -> ( 0 ... N ) e. Fin ) |
3 |
|
fzfid |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( 0 ... ( N - j ) ) e. Fin ) |
4 |
|
fsum0diaglem |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( k e. ( 0 ... N ) /\ j e. ( 0 ... ( N - k ) ) ) ) |
5 |
|
fsum0diaglem |
|- ( ( k e. ( 0 ... N ) /\ j e. ( 0 ... ( N - k ) ) ) -> ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) ) |
6 |
4 5
|
impbii |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) <-> ( k e. ( 0 ... N ) /\ j e. ( 0 ... ( N - k ) ) ) ) |
7 |
6
|
a1i |
|- ( ph -> ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) <-> ( k e. ( 0 ... N ) /\ j e. ( 0 ... ( N - k ) ) ) ) ) |
8 |
2 2 3 7 1
|
fsumcom2 |
|- ( ph -> sum_ j e. ( 0 ... N ) sum_ k e. ( 0 ... ( N - j ) ) A = sum_ k e. ( 0 ... N ) sum_ j e. ( 0 ... ( N - k ) ) A ) |