Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite sums
sumeq12rdv
Next ⟩
sum2id
Metamath Proof Explorer
Ascii
Unicode
Theorem
sumeq12rdv
Description:
Equality deduction for sum.
(Contributed by
NM
, 1-Dec-2005)
Ref
Expression
Hypotheses
sumeq12rdv.1
⊢
φ
→
A
=
B
sumeq12rdv.2
⊢
φ
∧
k
∈
B
→
C
=
D
Assertion
sumeq12rdv
⊢
φ
→
∑
k
∈
A
C
=
∑
k
∈
B
D
Proof
Step
Hyp
Ref
Expression
1
sumeq12rdv.1
⊢
φ
→
A
=
B
2
sumeq12rdv.2
⊢
φ
∧
k
∈
B
→
C
=
D
3
1
sumeq1d
⊢
φ
→
∑
k
∈
A
C
=
∑
k
∈
B
C
4
2
sumeq2dv
⊢
φ
→
∑
k
∈
B
C
=
∑
k
∈
B
D
5
3
4
eqtrd
⊢
φ
→
∑
k
∈
A
C
=
∑
k
∈
B
D