Metamath Proof Explorer


Theorem fsumrev2

Description: Reversal of a finite sum. (Contributed by NM, 27-Nov-2005) (Revised by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses fsumrev2.1 φjMNA
fsumrev2.2 j=M+N-kA=B
Assertion fsumrev2 φj=MNA=k=MNB

Proof

Step Hyp Ref Expression
1 fsumrev2.1 φjMNA
2 fsumrev2.2 j=M+N-kA=B
3 sum0 jA=0
4 sum0 kB=0
5 3 4 eqtr4i jA=kB
6 sumeq1 MN=j=MNA=jA
7 sumeq1 MN=k=MNB=kB
8 5 6 7 3eqtr4a MN=j=MNA=k=MNB
9 8 adantl φMN=j=MNA=k=MNB
10 fzn0 MNNM
11 eluzel2 NMM
12 11 adantl φNMM
13 eluzelz NMN
14 13 adantl φNMN
15 12 14 zaddcld φNMM+N
16 1 adantlr φNMjMNA
17 15 12 14 16 2 fsumrev φNMj=MNA=k=M+N-NM+N-MB
18 12 zcnd φNMM
19 14 zcnd φNMN
20 18 19 pncand φNMM+N-N=M
21 18 19 pncan2d φNMM+N-M=N
22 20 21 oveq12d φNMM+N-NM+N-M=MN
23 22 sumeq1d φNMk=M+N-NM+N-MB=k=MNB
24 17 23 eqtrd φNMj=MNA=k=MNB
25 10 24 sylan2b φMNj=MNA=k=MNB
26 9 25 pm2.61dane φj=MNA=k=MNB