| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumrev2.1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 2 |
|
fsumrev2.2 |
⊢ ( 𝑗 = ( ( 𝑀 + 𝑁 ) − 𝑘 ) → 𝐴 = 𝐵 ) |
| 3 |
|
sum0 |
⊢ Σ 𝑗 ∈ ∅ 𝐴 = 0 |
| 4 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 |
| 5 |
3 4
|
eqtr4i |
⊢ Σ 𝑗 ∈ ∅ 𝐴 = Σ 𝑘 ∈ ∅ 𝐵 |
| 6 |
|
sumeq1 |
⊢ ( ( 𝑀 ... 𝑁 ) = ∅ → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑗 ∈ ∅ 𝐴 ) |
| 7 |
|
sumeq1 |
⊢ ( ( 𝑀 ... 𝑁 ) = ∅ → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) |
| 8 |
5 6 7
|
3eqtr4a |
⊢ ( ( 𝑀 ... 𝑁 ) = ∅ → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐵 ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑀 ... 𝑁 ) = ∅ ) → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐵 ) |
| 10 |
|
fzn0 |
⊢ ( ( 𝑀 ... 𝑁 ) ≠ ∅ ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 11 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℤ ) |
| 13 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑁 ∈ ℤ ) |
| 15 |
12 14
|
zaddcld |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
| 16 |
1
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 17 |
15 12 14 16 2
|
fsumrev |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( ( ( 𝑀 + 𝑁 ) − 𝑁 ) ... ( ( 𝑀 + 𝑁 ) − 𝑀 ) ) 𝐵 ) |
| 18 |
12
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℂ ) |
| 19 |
14
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑁 ∈ ℂ ) |
| 20 |
18 19
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑀 + 𝑁 ) − 𝑁 ) = 𝑀 ) |
| 21 |
18 19
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑀 + 𝑁 ) − 𝑀 ) = 𝑁 ) |
| 22 |
20 21
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( 𝑀 + 𝑁 ) − 𝑁 ) ... ( ( 𝑀 + 𝑁 ) − 𝑀 ) ) = ( 𝑀 ... 𝑁 ) ) |
| 23 |
22
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → Σ 𝑘 ∈ ( ( ( 𝑀 + 𝑁 ) − 𝑁 ) ... ( ( 𝑀 + 𝑁 ) − 𝑀 ) ) 𝐵 = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐵 ) |
| 24 |
17 23
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐵 ) |
| 25 |
10 24
|
sylan2b |
⊢ ( ( 𝜑 ∧ ( 𝑀 ... 𝑁 ) ≠ ∅ ) → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐵 ) |
| 26 |
9 25
|
pm2.61dane |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐵 ) |