Step |
Hyp |
Ref |
Expression |
1 |
|
plyadd.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
2 |
|
plyadd.2 |
⊢ ( 𝜑 → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
3 |
|
plyadd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
4 |
|
plymul.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) |
5 |
|
plysub.5 |
⊢ ( 𝜑 → - 1 ∈ 𝑆 ) |
6 |
|
cnex |
⊢ ℂ ∈ V |
7 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 : ℂ ⟶ ℂ ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝐹 : ℂ ⟶ ℂ ) |
9 |
|
plyf |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → 𝐺 : ℂ ⟶ ℂ ) |
10 |
2 9
|
syl |
⊢ ( 𝜑 → 𝐺 : ℂ ⟶ ℂ ) |
11 |
|
ofnegsub |
⊢ ( ( ℂ ∈ V ∧ 𝐹 : ℂ ⟶ ℂ ∧ 𝐺 : ℂ ⟶ ℂ ) → ( 𝐹 ∘f + ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) = ( 𝐹 ∘f − 𝐺 ) ) |
12 |
6 8 10 11
|
mp3an2i |
⊢ ( 𝜑 → ( 𝐹 ∘f + ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) = ( 𝐹 ∘f − 𝐺 ) ) |
13 |
|
plybss |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝑆 ⊆ ℂ ) |
14 |
1 13
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
15 |
|
plyconst |
⊢ ( ( 𝑆 ⊆ ℂ ∧ - 1 ∈ 𝑆 ) → ( ℂ × { - 1 } ) ∈ ( Poly ‘ 𝑆 ) ) |
16 |
14 5 15
|
syl2anc |
⊢ ( 𝜑 → ( ℂ × { - 1 } ) ∈ ( Poly ‘ 𝑆 ) ) |
17 |
16 2 3 4
|
plymul |
⊢ ( 𝜑 → ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ∈ ( Poly ‘ 𝑆 ) ) |
18 |
1 17 3
|
plyadd |
⊢ ( 𝜑 → ( 𝐹 ∘f + ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) ∈ ( Poly ‘ 𝑆 ) ) |
19 |
12 18
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐺 ) ∈ ( Poly ‘ 𝑆 ) ) |