| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plyadd.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
| 2 |
|
plyadd.2 |
⊢ ( 𝜑 → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
| 3 |
|
plyadd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 4 |
|
elply2 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ↔ ( 𝑆 ⊆ ℂ ∧ ∃ 𝑚 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
| 5 |
4
|
simprbi |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ∃ 𝑚 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
| 6 |
1 5
|
syl |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
| 7 |
|
elply2 |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) ↔ ( 𝑆 ⊆ ℂ ∧ ∃ 𝑛 ∈ ℕ0 ∃ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
| 8 |
7
|
simprbi |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → ∃ 𝑛 ∈ ℕ0 ∃ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
| 9 |
2 8
|
syl |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ0 ∃ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
| 10 |
|
reeanv |
⊢ ( ∃ 𝑚 ∈ ℕ0 ∃ 𝑛 ∈ ℕ0 ( ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ∃ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ↔ ( ∃ 𝑚 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ∃ 𝑛 ∈ ℕ0 ∃ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
| 11 |
|
reeanv |
⊢ ( ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∃ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ↔ ( ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ∃ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
| 12 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ∧ ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) → 𝜑 ) |
| 13 |
12 1
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ∧ ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
| 14 |
12 2
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ∧ ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
| 15 |
12 3
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ∧ ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 16 |
|
simp1rl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ∧ ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) → 𝑚 ∈ ℕ0 ) |
| 17 |
|
simp1rr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ∧ ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) → 𝑛 ∈ ℕ0 ) |
| 18 |
|
simp2l |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ∧ ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) → 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) |
| 19 |
|
simp2r |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ∧ ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) → 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) |
| 20 |
|
simp3ll |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ∧ ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) → ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ) |
| 21 |
|
simp3rl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ∧ ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) → ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ) |
| 22 |
|
simp3lr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ∧ ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 23 |
|
oveq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 ↑ 𝑘 ) = ( 𝑤 ↑ 𝑘 ) ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( 𝑎 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) |
| 25 |
24
|
sumeq2sdv |
⊢ ( 𝑧 = 𝑤 → Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) |
| 26 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑎 ‘ 𝑘 ) = ( 𝑎 ‘ 𝑗 ) ) |
| 27 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑤 ↑ 𝑘 ) = ( 𝑤 ↑ 𝑗 ) ) |
| 28 |
26 27
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑎 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) = ( ( 𝑎 ‘ 𝑗 ) · ( 𝑤 ↑ 𝑗 ) ) ) |
| 29 |
28
|
cbvsumv |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑗 ) · ( 𝑤 ↑ 𝑗 ) ) |
| 30 |
25 29
|
eqtrdi |
⊢ ( 𝑧 = 𝑤 → Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑗 ) · ( 𝑤 ↑ 𝑗 ) ) ) |
| 31 |
30
|
cbvmptv |
⊢ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑤 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑗 ) · ( 𝑤 ↑ 𝑗 ) ) ) |
| 32 |
22 31
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ∧ ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) → 𝐹 = ( 𝑤 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑗 ) · ( 𝑤 ↑ 𝑗 ) ) ) ) |
| 33 |
|
simp3rr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ∧ ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) → 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 34 |
23
|
oveq2d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( 𝑏 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) |
| 35 |
34
|
sumeq2sdv |
⊢ ( 𝑧 = 𝑤 → Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) |
| 36 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑏 ‘ 𝑘 ) = ( 𝑏 ‘ 𝑗 ) ) |
| 37 |
36 27
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑏 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) = ( ( 𝑏 ‘ 𝑗 ) · ( 𝑤 ↑ 𝑗 ) ) ) |
| 38 |
37
|
cbvsumv |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑗 ) · ( 𝑤 ↑ 𝑗 ) ) |
| 39 |
35 38
|
eqtrdi |
⊢ ( 𝑧 = 𝑤 → Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑗 ) · ( 𝑤 ↑ 𝑗 ) ) ) |
| 40 |
39
|
cbvmptv |
⊢ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑤 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑗 ) · ( 𝑤 ↑ 𝑗 ) ) ) |
| 41 |
33 40
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ∧ ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) → 𝐺 = ( 𝑤 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑗 ) · ( 𝑤 ↑ 𝑗 ) ) ) ) |
| 42 |
13 14 15 16 17 18 19 20 21 32 41
|
plyaddlem |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ∧ ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( Poly ‘ 𝑆 ) ) |
| 43 |
42
|
3expia |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 44 |
43
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) → ( ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∃ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 45 |
11 44
|
biimtrrid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) → ( ( ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ∃ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 46 |
45
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℕ0 ∃ 𝑛 ∈ ℕ0 ( ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ∃ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 47 |
10 46
|
biimtrrid |
⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ∃ 𝑛 ∈ ℕ0 ∃ 𝑏 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑏 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 48 |
6 9 47
|
mp2and |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) ∈ ( Poly ‘ 𝑆 ) ) |