| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plyadd.1 |
|- ( ph -> F e. ( Poly ` S ) ) |
| 2 |
|
plyadd.2 |
|- ( ph -> G e. ( Poly ` S ) ) |
| 3 |
|
plyadd.3 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
| 4 |
|
elply2 |
|- ( F e. ( Poly ` S ) <-> ( S C_ CC /\ E. m e. NN0 E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) ) |
| 5 |
4
|
simprbi |
|- ( F e. ( Poly ` S ) -> E. m e. NN0 E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) |
| 6 |
1 5
|
syl |
|- ( ph -> E. m e. NN0 E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) |
| 7 |
|
elply2 |
|- ( G e. ( Poly ` S ) <-> ( S C_ CC /\ E. n e. NN0 E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) |
| 8 |
7
|
simprbi |
|- ( G e. ( Poly ` S ) -> E. n e. NN0 E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) |
| 9 |
2 8
|
syl |
|- ( ph -> E. n e. NN0 E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) |
| 10 |
|
reeanv |
|- ( E. m e. NN0 E. n e. NN0 ( E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) <-> ( E. m e. NN0 E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. n e. NN0 E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) |
| 11 |
|
reeanv |
|- ( E. a e. ( ( S u. { 0 } ) ^m NN0 ) E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) <-> ( E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) |
| 12 |
|
simp1l |
|- ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> ph ) |
| 13 |
12 1
|
syl |
|- ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> F e. ( Poly ` S ) ) |
| 14 |
12 2
|
syl |
|- ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> G e. ( Poly ` S ) ) |
| 15 |
12 3
|
sylan |
|- ( ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
| 16 |
|
simp1rl |
|- ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> m e. NN0 ) |
| 17 |
|
simp1rr |
|- ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> n e. NN0 ) |
| 18 |
|
simp2l |
|- ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> a e. ( ( S u. { 0 } ) ^m NN0 ) ) |
| 19 |
|
simp2r |
|- ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> b e. ( ( S u. { 0 } ) ^m NN0 ) ) |
| 20 |
|
simp3ll |
|- ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } ) |
| 21 |
|
simp3rl |
|- ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } ) |
| 22 |
|
simp3lr |
|- ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) |
| 23 |
|
oveq1 |
|- ( z = w -> ( z ^ k ) = ( w ^ k ) ) |
| 24 |
23
|
oveq2d |
|- ( z = w -> ( ( a ` k ) x. ( z ^ k ) ) = ( ( a ` k ) x. ( w ^ k ) ) ) |
| 25 |
24
|
sumeq2sdv |
|- ( z = w -> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( w ^ k ) ) ) |
| 26 |
|
fveq2 |
|- ( k = j -> ( a ` k ) = ( a ` j ) ) |
| 27 |
|
oveq2 |
|- ( k = j -> ( w ^ k ) = ( w ^ j ) ) |
| 28 |
26 27
|
oveq12d |
|- ( k = j -> ( ( a ` k ) x. ( w ^ k ) ) = ( ( a ` j ) x. ( w ^ j ) ) ) |
| 29 |
28
|
cbvsumv |
|- sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( w ^ k ) ) = sum_ j e. ( 0 ... m ) ( ( a ` j ) x. ( w ^ j ) ) |
| 30 |
25 29
|
eqtrdi |
|- ( z = w -> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) = sum_ j e. ( 0 ... m ) ( ( a ` j ) x. ( w ^ j ) ) ) |
| 31 |
30
|
cbvmptv |
|- ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) = ( w e. CC |-> sum_ j e. ( 0 ... m ) ( ( a ` j ) x. ( w ^ j ) ) ) |
| 32 |
22 31
|
eqtrdi |
|- ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> F = ( w e. CC |-> sum_ j e. ( 0 ... m ) ( ( a ` j ) x. ( w ^ j ) ) ) ) |
| 33 |
|
simp3rr |
|- ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) |
| 34 |
23
|
oveq2d |
|- ( z = w -> ( ( b ` k ) x. ( z ^ k ) ) = ( ( b ` k ) x. ( w ^ k ) ) ) |
| 35 |
34
|
sumeq2sdv |
|- ( z = w -> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( w ^ k ) ) ) |
| 36 |
|
fveq2 |
|- ( k = j -> ( b ` k ) = ( b ` j ) ) |
| 37 |
36 27
|
oveq12d |
|- ( k = j -> ( ( b ` k ) x. ( w ^ k ) ) = ( ( b ` j ) x. ( w ^ j ) ) ) |
| 38 |
37
|
cbvsumv |
|- sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( w ^ k ) ) = sum_ j e. ( 0 ... n ) ( ( b ` j ) x. ( w ^ j ) ) |
| 39 |
35 38
|
eqtrdi |
|- ( z = w -> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) = sum_ j e. ( 0 ... n ) ( ( b ` j ) x. ( w ^ j ) ) ) |
| 40 |
39
|
cbvmptv |
|- ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) = ( w e. CC |-> sum_ j e. ( 0 ... n ) ( ( b ` j ) x. ( w ^ j ) ) ) |
| 41 |
33 40
|
eqtrdi |
|- ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> G = ( w e. CC |-> sum_ j e. ( 0 ... n ) ( ( b ` j ) x. ( w ^ j ) ) ) ) |
| 42 |
13 14 15 16 17 18 19 20 21 32 41
|
plyaddlem |
|- ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> ( F oF + G ) e. ( Poly ` S ) ) |
| 43 |
42
|
3expia |
|- ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> ( ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> ( F oF + G ) e. ( Poly ` S ) ) ) |
| 44 |
43
|
rexlimdvva |
|- ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) -> ( E. a e. ( ( S u. { 0 } ) ^m NN0 ) E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> ( F oF + G ) e. ( Poly ` S ) ) ) |
| 45 |
11 44
|
biimtrrid |
|- ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) -> ( ( E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> ( F oF + G ) e. ( Poly ` S ) ) ) |
| 46 |
45
|
rexlimdvva |
|- ( ph -> ( E. m e. NN0 E. n e. NN0 ( E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> ( F oF + G ) e. ( Poly ` S ) ) ) |
| 47 |
10 46
|
biimtrrid |
|- ( ph -> ( ( E. m e. NN0 E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. n e. NN0 E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> ( F oF + G ) e. ( Poly ` S ) ) ) |
| 48 |
6 9 47
|
mp2and |
|- ( ph -> ( F oF + G ) e. ( Poly ` S ) ) |