Metamath Proof Explorer


Theorem qnegcl

Description: Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004) (Revised by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion qnegcl AA

Proof

Step Hyp Ref Expression
1 elq AxyA=xy
2 zcn xx
3 2 adantr xyx
4 nncn yy
5 4 adantl xyy
6 nnne0 yy0
7 6 adantl xyy0
8 3 5 7 divnegd xyxy=xy
9 znegcl xx
10 znq xyxy
11 9 10 sylan xyxy
12 8 11 eqeltrd xyxy
13 negeq A=xyA=xy
14 13 eleq1d A=xyAxy
15 12 14 syl5ibrcom xyA=xyA
16 15 rexlimivv xyA=xyA
17 1 16 sylbi AA