Description: Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004) (Revised by Mario Carneiro, 15-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | qnegcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elq | |
|
2 | zcn | |
|
3 | 2 | adantr | |
4 | nncn | |
|
5 | 4 | adantl | |
6 | nnne0 | |
|
7 | 6 | adantl | |
8 | 3 5 7 | divnegd | |
9 | znegcl | |
|
10 | znq | |
|
11 | 9 10 | sylan | |
12 | 8 11 | eqeltrd | |
13 | negeq | |
|
14 | 13 | eleq1d | |
15 | 12 14 | syl5ibrcom | |
16 | 15 | rexlimivv | |
17 | 1 16 | sylbi | |