| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qcn |
|- ( A e. QQ -> A e. CC ) |
| 2 |
|
qsscn |
|- QQ C_ CC |
| 3 |
|
1z |
|- 1 e. ZZ |
| 4 |
|
zq |
|- ( 1 e. ZZ -> 1 e. QQ ) |
| 5 |
3 4
|
ax-mp |
|- 1 e. QQ |
| 6 |
|
plyid |
|- ( ( QQ C_ CC /\ 1 e. QQ ) -> Xp e. ( Poly ` QQ ) ) |
| 7 |
2 5 6
|
mp2an |
|- Xp e. ( Poly ` QQ ) |
| 8 |
7
|
a1i |
|- ( A e. QQ -> Xp e. ( Poly ` QQ ) ) |
| 9 |
|
plyconst |
|- ( ( QQ C_ CC /\ A e. QQ ) -> ( CC X. { A } ) e. ( Poly ` QQ ) ) |
| 10 |
2 9
|
mpan |
|- ( A e. QQ -> ( CC X. { A } ) e. ( Poly ` QQ ) ) |
| 11 |
|
qaddcl |
|- ( ( x e. QQ /\ y e. QQ ) -> ( x + y ) e. QQ ) |
| 12 |
11
|
adantl |
|- ( ( A e. QQ /\ ( x e. QQ /\ y e. QQ ) ) -> ( x + y ) e. QQ ) |
| 13 |
|
qmulcl |
|- ( ( x e. QQ /\ y e. QQ ) -> ( x x. y ) e. QQ ) |
| 14 |
13
|
adantl |
|- ( ( A e. QQ /\ ( x e. QQ /\ y e. QQ ) ) -> ( x x. y ) e. QQ ) |
| 15 |
|
qnegcl |
|- ( 1 e. QQ -> -u 1 e. QQ ) |
| 16 |
5 15
|
ax-mp |
|- -u 1 e. QQ |
| 17 |
16
|
a1i |
|- ( A e. QQ -> -u 1 e. QQ ) |
| 18 |
8 10 12 14 17
|
plysub |
|- ( A e. QQ -> ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` QQ ) ) |
| 19 |
|
peano2cn |
|- ( A e. CC -> ( A + 1 ) e. CC ) |
| 20 |
1 19
|
syl |
|- ( A e. QQ -> ( A + 1 ) e. CC ) |
| 21 |
|
fnresi |
|- ( _I |` CC ) Fn CC |
| 22 |
|
df-idp |
|- Xp = ( _I |` CC ) |
| 23 |
22
|
fneq1i |
|- ( Xp Fn CC <-> ( _I |` CC ) Fn CC ) |
| 24 |
21 23
|
mpbir |
|- Xp Fn CC |
| 25 |
24
|
a1i |
|- ( A e. QQ -> Xp Fn CC ) |
| 26 |
|
fnconstg |
|- ( A e. QQ -> ( CC X. { A } ) Fn CC ) |
| 27 |
|
cnex |
|- CC e. _V |
| 28 |
27
|
a1i |
|- ( A e. QQ -> CC e. _V ) |
| 29 |
|
inidm |
|- ( CC i^i CC ) = CC |
| 30 |
22
|
fveq1i |
|- ( Xp ` ( A + 1 ) ) = ( ( _I |` CC ) ` ( A + 1 ) ) |
| 31 |
|
fvresi |
|- ( ( A + 1 ) e. CC -> ( ( _I |` CC ) ` ( A + 1 ) ) = ( A + 1 ) ) |
| 32 |
30 31
|
eqtrid |
|- ( ( A + 1 ) e. CC -> ( Xp ` ( A + 1 ) ) = ( A + 1 ) ) |
| 33 |
32
|
adantl |
|- ( ( A e. QQ /\ ( A + 1 ) e. CC ) -> ( Xp ` ( A + 1 ) ) = ( A + 1 ) ) |
| 34 |
|
fvconst2g |
|- ( ( A e. QQ /\ ( A + 1 ) e. CC ) -> ( ( CC X. { A } ) ` ( A + 1 ) ) = A ) |
| 35 |
25 26 28 28 29 33 34
|
ofval |
|- ( ( A e. QQ /\ ( A + 1 ) e. CC ) -> ( ( Xp oF - ( CC X. { A } ) ) ` ( A + 1 ) ) = ( ( A + 1 ) - A ) ) |
| 36 |
20 35
|
mpdan |
|- ( A e. QQ -> ( ( Xp oF - ( CC X. { A } ) ) ` ( A + 1 ) ) = ( ( A + 1 ) - A ) ) |
| 37 |
|
ax-1cn |
|- 1 e. CC |
| 38 |
|
pncan2 |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - A ) = 1 ) |
| 39 |
1 37 38
|
sylancl |
|- ( A e. QQ -> ( ( A + 1 ) - A ) = 1 ) |
| 40 |
36 39
|
eqtrd |
|- ( A e. QQ -> ( ( Xp oF - ( CC X. { A } ) ) ` ( A + 1 ) ) = 1 ) |
| 41 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 42 |
41
|
a1i |
|- ( A e. QQ -> 1 =/= 0 ) |
| 43 |
40 42
|
eqnetrd |
|- ( A e. QQ -> ( ( Xp oF - ( CC X. { A } ) ) ` ( A + 1 ) ) =/= 0 ) |
| 44 |
|
ne0p |
|- ( ( ( A + 1 ) e. CC /\ ( ( Xp oF - ( CC X. { A } ) ) ` ( A + 1 ) ) =/= 0 ) -> ( Xp oF - ( CC X. { A } ) ) =/= 0p ) |
| 45 |
20 43 44
|
syl2anc |
|- ( A e. QQ -> ( Xp oF - ( CC X. { A } ) ) =/= 0p ) |
| 46 |
|
eldifsn |
|- ( ( Xp oF - ( CC X. { A } ) ) e. ( ( Poly ` QQ ) \ { 0p } ) <-> ( ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` QQ ) /\ ( Xp oF - ( CC X. { A } ) ) =/= 0p ) ) |
| 47 |
18 45 46
|
sylanbrc |
|- ( A e. QQ -> ( Xp oF - ( CC X. { A } ) ) e. ( ( Poly ` QQ ) \ { 0p } ) ) |
| 48 |
22
|
fveq1i |
|- ( Xp ` A ) = ( ( _I |` CC ) ` A ) |
| 49 |
|
fvresi |
|- ( A e. CC -> ( ( _I |` CC ) ` A ) = A ) |
| 50 |
48 49
|
eqtrid |
|- ( A e. CC -> ( Xp ` A ) = A ) |
| 51 |
50
|
adantl |
|- ( ( A e. QQ /\ A e. CC ) -> ( Xp ` A ) = A ) |
| 52 |
|
fvconst2g |
|- ( ( A e. QQ /\ A e. CC ) -> ( ( CC X. { A } ) ` A ) = A ) |
| 53 |
25 26 28 28 29 51 52
|
ofval |
|- ( ( A e. QQ /\ A e. CC ) -> ( ( Xp oF - ( CC X. { A } ) ) ` A ) = ( A - A ) ) |
| 54 |
1 53
|
mpdan |
|- ( A e. QQ -> ( ( Xp oF - ( CC X. { A } ) ) ` A ) = ( A - A ) ) |
| 55 |
1
|
subidd |
|- ( A e. QQ -> ( A - A ) = 0 ) |
| 56 |
54 55
|
eqtrd |
|- ( A e. QQ -> ( ( Xp oF - ( CC X. { A } ) ) ` A ) = 0 ) |
| 57 |
|
fveq1 |
|- ( f = ( Xp oF - ( CC X. { A } ) ) -> ( f ` A ) = ( ( Xp oF - ( CC X. { A } ) ) ` A ) ) |
| 58 |
57
|
eqeq1d |
|- ( f = ( Xp oF - ( CC X. { A } ) ) -> ( ( f ` A ) = 0 <-> ( ( Xp oF - ( CC X. { A } ) ) ` A ) = 0 ) ) |
| 59 |
58
|
rspcev |
|- ( ( ( Xp oF - ( CC X. { A } ) ) e. ( ( Poly ` QQ ) \ { 0p } ) /\ ( ( Xp oF - ( CC X. { A } ) ) ` A ) = 0 ) -> E. f e. ( ( Poly ` QQ ) \ { 0p } ) ( f ` A ) = 0 ) |
| 60 |
47 56 59
|
syl2anc |
|- ( A e. QQ -> E. f e. ( ( Poly ` QQ ) \ { 0p } ) ( f ` A ) = 0 ) |
| 61 |
|
elqaa |
|- ( A e. AA <-> ( A e. CC /\ E. f e. ( ( Poly ` QQ ) \ { 0p } ) ( f ` A ) = 0 ) ) |
| 62 |
1 60 61
|
sylanbrc |
|- ( A e. QQ -> A e. AA ) |