Metamath Proof Explorer


Theorem plyid

Description: The identity function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion plyid S1SXpPolyS

Proof

Step Hyp Ref Expression
1 mptresid I=zz
2 df-idp Xp=I
3 exp1 zz1=z
4 3 mpteq2ia zz1=zz
5 1 2 4 3eqtr4i Xp=zz1
6 1nn0 10
7 plypow S1S10zz1PolyS
8 6 7 mp3an3 S1Szz1PolyS
9 5 8 eqeltrid S1SXpPolyS