Metamath Proof Explorer


Theorem plyeq0lem

Description: Lemma for plyeq0 . If A is the coefficient function for a nonzero polynomial such that P ( z ) = sum_ k e. NN0 A ( k ) x. z ^ k = 0 for every z e. CC and A ( M ) is the nonzero leading coefficient, then the function F ( z ) = P ( z ) / z ^ M is a sum of powers of 1 / z , and so the limit of this function as z ~> +oo is the constant term, A ( M ) . But F ( z ) = 0 everywhere, so this limit is also equal to zero so that A ( M ) = 0 , a contradiction. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypotheses plyeq0.1 φ S
plyeq0.2 φ N 0
plyeq0.3 φ A S 0 0
plyeq0.4 φ A N + 1 = 0
plyeq0.5 φ 0 𝑝 = z k = 0 N A k z k
plyeq0.6 M = sup A -1 S 0 <
plyeq0.7 φ A -1 S 0
Assertion plyeq0lem ¬ φ

Proof

Step Hyp Ref Expression
1 plyeq0.1 φ S
2 plyeq0.2 φ N 0
3 plyeq0.3 φ A S 0 0
4 plyeq0.4 φ A N + 1 = 0
5 plyeq0.5 φ 0 𝑝 = z k = 0 N A k z k
6 plyeq0.6 M = sup A -1 S 0 <
7 plyeq0.7 φ A -1 S 0
8 nnuz = 1
9 1zzd φ 1
10 fzfid φ 0 N Fin
11 1zzd φ k 0 N k < M 1
12 0cn 0
13 12 a1i φ 0
14 13 snssd φ 0
15 1 14 unssd φ S 0
16 cnex V
17 ssexg S 0 V S 0 V
18 15 16 17 sylancl φ S 0 V
19 nn0ex 0 V
20 elmapg S 0 V 0 V A S 0 0 A : 0 S 0
21 18 19 20 sylancl φ A S 0 0 A : 0 S 0
22 3 21 mpbid φ A : 0 S 0
23 22 15 fssd φ A : 0
24 elfznn0 k 0 N k 0
25 ffvelrn A : 0 k 0 A k
26 23 24 25 syl2an φ k 0 N A k
27 26 adantr φ k 0 N k < M A k
28 27 abscld φ k 0 N k < M A k
29 28 recnd φ k 0 N k < M A k
30 divcnv A k n A k n 0
31 29 30 syl φ k 0 N k < M n A k n 0
32 nnex V
33 32 mptex n A k n k M V
34 33 a1i φ k 0 N k < M n A k n k M V
35 oveq2 n = m A k n = A k m
36 eqid n A k n = n A k n
37 ovex A k m V
38 35 36 37 fvmpt m n A k n m = A k m
39 38 adantl φ k 0 N k < M m n A k n m = A k m
40 nndivre A k m A k m
41 28 40 sylan φ k 0 N k < M m A k m
42 39 41 eqeltrd φ k 0 N k < M m n A k n m
43 oveq1 n = m n k M = m k M
44 43 oveq2d n = m A k n k M = A k m k M
45 eqid n A k n k M = n A k n k M
46 ovex A k m k M V
47 44 45 46 fvmpt m n A k n k M m = A k m k M
48 47 adantl φ k 0 N k < M m n A k n k M m = A k m k M
49 26 ad2antrr φ k 0 N k < M m A k
50 49 abscld φ k 0 N k < M m A k
51 nnrp m m +
52 51 adantl φ k 0 N k < M m m +
53 elfzelz k 0 N k
54 cnvimass A -1 S 0 dom A
55 54 22 fssdm φ A -1 S 0 0
56 nn0ssz 0
57 55 56 sstrdi φ A -1 S 0
58 2 nn0red φ N
59 22 ffnd φ A Fn 0
60 elpreima A Fn 0 z A -1 S 0 z 0 A z S 0
61 59 60 syl φ z A -1 S 0 z 0 A z S 0
62 61 simplbda φ z A -1 S 0 A z S 0
63 eldifsni A z S 0 A z 0
64 62 63 syl φ z A -1 S 0 A z 0
65 fveq2 k = z A k = A z
66 65 neeq1d k = z A k 0 A z 0
67 breq1 k = z k N z N
68 66 67 imbi12d k = z A k 0 k N A z 0 z N
69 plyco0 N 0 A : 0 A N + 1 = 0 k 0 A k 0 k N
70 2 23 69 syl2anc φ A N + 1 = 0 k 0 A k 0 k N
71 4 70 mpbid φ k 0 A k 0 k N
72 71 adantr φ z A -1 S 0 k 0 A k 0 k N
73 55 sselda φ z A -1 S 0 z 0
74 68 72 73 rspcdva φ z A -1 S 0 A z 0 z N
75 64 74 mpd φ z A -1 S 0 z N
76 75 ralrimiva φ z A -1 S 0 z N
77 brralrspcev N z A -1 S 0 z N x z A -1 S 0 z x
78 58 76 77 syl2anc φ x z A -1 S 0 z x
79 suprzcl A -1 S 0 A -1 S 0 x z A -1 S 0 z x sup A -1 S 0 < A -1 S 0
80 57 7 78 79 syl3anc φ sup A -1 S 0 < A -1 S 0
81 6 80 eqeltrid φ M A -1 S 0
82 55 81 sseldd φ M 0
83 82 nn0zd φ M
84 zsubcl k M k M
85 53 83 84 syl2anr φ k 0 N k M
86 85 ad2antrr φ k 0 N k < M m k M
87 52 86 rpexpcld φ k 0 N k < M m m k M +
88 87 rpred φ k 0 N k < M m m k M
89 50 88 remulcld φ k 0 N k < M m A k m k M
90 48 89 eqeltrd φ k 0 N k < M m n A k n k M m
91 nnrecre m 1 m
92 91 adantl φ k 0 N k < M m 1 m
93 27 absge0d φ k 0 N k < M 0 A k
94 93 adantr φ k 0 N k < M m 0 A k
95 nnre m m
96 95 adantl φ k 0 N k < M m m
97 nnge1 m 1 m
98 97 adantl φ k 0 N k < M m 1 m
99 1red φ k 0 N k < M m 1
100 86 zred φ k 0 N k < M m k M
101 simplr φ k 0 N k < M m k < M
102 53 adantl φ k 0 N k
103 102 ad2antrr φ k 0 N k < M m k
104 83 ad3antrrr φ k 0 N k < M m M
105 zltp1le k M k < M k + 1 M
106 103 104 105 syl2anc φ k 0 N k < M m k < M k + 1 M
107 101 106 mpbid φ k 0 N k < M m k + 1 M
108 24 adantl φ k 0 N k 0
109 108 nn0red φ k 0 N k
110 109 ad2antrr φ k 0 N k < M m k
111 82 adantr φ k 0 N M 0
112 111 nn0red φ k 0 N M
113 112 ad2antrr φ k 0 N k < M m M
114 110 99 113 leaddsub2d φ k 0 N k < M m k + 1 M 1 M k
115 107 114 mpbid φ k 0 N k < M m 1 M k
116 109 recnd φ k 0 N k
117 116 ad2antrr φ k 0 N k < M m k
118 112 recnd φ k 0 N M
119 118 ad2antrr φ k 0 N k < M m M
120 117 119 negsubdi2d φ k 0 N k < M m k M = M k
121 115 120 breqtrrd φ k 0 N k < M m 1 k M
122 99 100 121 lenegcon2d φ k 0 N k < M m k M 1
123 neg1z 1
124 eluz k M 1 1 k M k M 1
125 86 123 124 sylancl φ k 0 N k < M m 1 k M k M 1
126 122 125 mpbird φ k 0 N k < M m 1 k M
127 96 98 126 leexp2ad φ k 0 N k < M m m k M m 1
128 nncn m m
129 128 adantl φ k 0 N k < M m m
130 expn1 m m 1 = 1 m
131 129 130 syl φ k 0 N k < M m m 1 = 1 m
132 127 131 breqtrd φ k 0 N k < M m m k M 1 m
133 88 92 50 94 132 lemul2ad φ k 0 N k < M m A k m k M A k 1 m
134 29 adantr φ k 0 N k < M m A k
135 nnne0 m m 0
136 135 adantl φ k 0 N k < M m m 0
137 134 129 136 divrecd φ k 0 N k < M m A k m = A k 1 m
138 39 137 eqtrd φ k 0 N k < M m n A k n m = A k 1 m
139 133 48 138 3brtr4d φ k 0 N k < M m n A k n k M m n A k n m
140 87 rpge0d φ k 0 N k < M m 0 m k M
141 50 88 94 140 mulge0d φ k 0 N k < M m 0 A k m k M
142 141 48 breqtrrd φ k 0 N k < M m 0 n A k n k M m
143 8 11 31 34 42 90 139 142 climsqz2 φ k 0 N k < M n A k n k M 0
144 32 mptex n A k n k M V
145 144 a1i φ k 0 N k < M n A k n k M V
146 43 oveq2d n = m A k n k M = A k m k M
147 eqid n A k n k M = n A k n k M
148 ovex A k m k M V
149 146 147 148 fvmpt m n A k n k M m = A k m k M
150 149 ad2antlr φ m k 0 N n A k n k M m = A k m k M
151 23 adantr φ m A : 0
152 151 24 25 syl2an φ m k 0 N A k
153 128 ad2antlr φ m k 0 N m
154 135 ad2antlr φ m k 0 N m 0
155 83 adantr φ m M
156 53 155 84 syl2anr φ m k 0 N k M
157 153 154 156 expclzd φ m k 0 N m k M
158 152 157 mulcld φ m k 0 N A k m k M
159 150 158 eqeltrd φ m k 0 N n A k n k M m
160 159 an32s φ k 0 N m n A k n k M m
161 160 adantlr φ k 0 N k < M m n A k n k M m
162 88 recnd φ k 0 N k < M m m k M
163 49 162 absmuld φ k 0 N k < M m A k m k M = A k m k M
164 88 140 absidd φ k 0 N k < M m m k M = m k M
165 164 oveq2d φ k 0 N k < M m A k m k M = A k m k M
166 163 165 eqtrd φ k 0 N k < M m A k m k M = A k m k M
167 149 adantl φ k 0 N k < M m n A k n k M m = A k m k M
168 167 fveq2d φ k 0 N k < M m n A k n k M m = A k m k M
169 166 168 48 3eqtr4rd φ k 0 N k < M m n A k n k M m = n A k n k M m
170 8 11 145 34 161 169 climabs0 φ k 0 N k < M n A k n k M 0 n A k n k M 0
171 143 170 mpbird φ k 0 N k < M n A k n k M 0
172 109 adantr φ k 0 N k < M k
173 simpr φ k 0 N k < M k < M
174 172 173 ltned φ k 0 N k < M k M
175 velsn k M k = M
176 175 necon3bbii ¬ k M k M
177 174 176 sylibr φ k 0 N k < M ¬ k M
178 177 iffalsed φ k 0 N k < M if k M A k 0 = 0
179 171 178 breqtrrd φ k 0 N k < M n A k n k M if k M A k 0
180 nncn n n
181 180 ad2antlr φ k 0 N M k n A k = 0 n
182 nnne0 n n 0
183 182 ad2antlr φ k 0 N M k n A k = 0 n 0
184 85 ad3antrrr φ k 0 N M k n A k = 0 k M
185 181 183 184 expclzd φ k 0 N M k n A k = 0 n k M
186 185 mul02d φ k 0 N M k n A k = 0 0 n k M = 0
187 simpr φ k 0 N M k n A k = 0 A k = 0
188 187 oveq1d φ k 0 N M k n A k = 0 A k n k M = 0 n k M
189 187 ifeq1d φ k 0 N M k n A k = 0 if k M A k 0 = if k M 0 0
190 ifid if k M 0 0 = 0
191 189 190 eqtrdi φ k 0 N M k n A k = 0 if k M A k 0 = 0
192 186 188 191 3eqtr4d φ k 0 N M k n A k = 0 A k n k M = if k M A k 0
193 26 adantr φ k 0 N M k A k
194 193 ad2antrr φ k 0 N M k n A k 0 A k
195 194 mulid1d φ k 0 N M k n A k 0 A k 1 = A k
196 nn0ssre 0
197 55 196 sstrdi φ A -1 S 0
198 197 ad2antrr φ k 0 N A k 0 A -1 S 0
199 7 ad2antrr φ k 0 N A k 0 A -1 S 0
200 78 ad2antrr φ k 0 N A k 0 x z A -1 S 0 z x
201 24 ad2antlr φ k 0 N A k 0 k 0
202 ffvelrn A : 0 S 0 k 0 A k S 0
203 22 24 202 syl2an φ k 0 N A k S 0
204 203 anim1i φ k 0 N A k 0 A k S 0 A k 0
205 eldifsn A k S 0 0 A k S 0 A k 0
206 204 205 sylibr φ k 0 N A k 0 A k S 0 0
207 difun2 S 0 0 = S 0
208 206 207 eleqtrdi φ k 0 N A k 0 A k S 0
209 elpreima A Fn 0 k A -1 S 0 k 0 A k S 0
210 59 209 syl φ k A -1 S 0 k 0 A k S 0
211 210 ad2antrr φ k 0 N A k 0 k A -1 S 0 k 0 A k S 0
212 201 208 211 mpbir2and φ k 0 N A k 0 k A -1 S 0
213 198 199 200 212 suprubd φ k 0 N A k 0 k sup A -1 S 0 <
214 213 6 breqtrrdi φ k 0 N A k 0 k M
215 214 ad4ant14 φ k 0 N M k n A k 0 k M
216 simpllr φ k 0 N M k n A k 0 M k
217 109 ad3antrrr φ k 0 N M k n A k 0 k
218 112 ad3antrrr φ k 0 N M k n A k 0 M
219 217 218 letri3d φ k 0 N M k n A k 0 k = M k M M k
220 215 216 219 mpbir2and φ k 0 N M k n A k 0 k = M
221 220 oveq1d φ k 0 N M k n A k 0 k M = M M
222 118 ad3antrrr φ k 0 N M k n A k 0 M
223 222 subidd φ k 0 N M k n A k 0 M M = 0
224 221 223 eqtrd φ k 0 N M k n A k 0 k M = 0
225 224 oveq2d φ k 0 N M k n A k 0 n k M = n 0
226 180 ad2antlr φ k 0 N M k n A k 0 n
227 226 exp0d φ k 0 N M k n A k 0 n 0 = 1
228 225 227 eqtrd φ k 0 N M k n A k 0 n k M = 1
229 228 oveq2d φ k 0 N M k n A k 0 A k n k M = A k 1
230 220 175 sylibr φ k 0 N M k n A k 0 k M
231 230 iftrued φ k 0 N M k n A k 0 if k M A k 0 = A k
232 195 229 231 3eqtr4d φ k 0 N M k n A k 0 A k n k M = if k M A k 0
233 192 232 pm2.61dane φ k 0 N M k n A k n k M = if k M A k 0
234 233 mpteq2dva φ k 0 N M k n A k n k M = n if k M A k 0
235 fconstmpt × if k M A k 0 = n if k M A k 0
236 234 235 eqtr4di φ k 0 N M k n A k n k M = × if k M A k 0
237 ifcl A k 0 if k M A k 0
238 193 12 237 sylancl φ k 0 N M k if k M A k 0
239 1z 1
240 8 eqimss2i 1
241 240 32 climconst2 if k M A k 0 1 × if k M A k 0 if k M A k 0
242 238 239 241 sylancl φ k 0 N M k × if k M A k 0 if k M A k 0
243 236 242 eqbrtrd φ k 0 N M k n A k n k M if k M A k 0
244 179 243 109 112 ltlecasei φ k 0 N n A k n k M if k M A k 0
245 snex 0 V
246 32 245 xpex × 0 V
247 246 a1i φ × 0 V
248 160 anasss φ k 0 N m n A k n k M m
249 5 fveq1d φ 0 𝑝 m = z k = 0 N A k z k m
250 249 adantr φ m 0 𝑝 m = z k = 0 N A k z k m
251 128 adantl φ m m
252 0pval m 0 𝑝 m = 0
253 251 252 syl φ m 0 𝑝 m = 0
254 oveq1 z = m z k = m k
255 254 oveq2d z = m A k z k = A k m k
256 255 sumeq2sdv z = m k = 0 N A k z k = k = 0 N A k m k
257 eqid z k = 0 N A k z k = z k = 0 N A k z k
258 sumex k = 0 N A k m k V
259 256 257 258 fvmpt m z k = 0 N A k z k m = k = 0 N A k m k
260 251 259 syl φ m z k = 0 N A k z k m = k = 0 N A k m k
261 250 253 260 3eqtr3d φ m 0 = k = 0 N A k m k
262 261 oveq1d φ m 0 m M = k = 0 N A k m k m M
263 expcl m M 0 m M
264 128 82 263 syl2anr φ m m M
265 135 adantl φ m m 0
266 251 265 155 expne0d φ m m M 0
267 264 266 div0d φ m 0 m M = 0
268 fzfid φ m 0 N Fin
269 expcl m k 0 m k
270 251 24 269 syl2an φ m k 0 N m k
271 152 270 mulcld φ m k 0 N A k m k
272 268 264 271 266 fsumdivc φ m k = 0 N A k m k m M = k = 0 N A k m k m M
273 262 267 272 3eqtr3d φ m 0 = k = 0 N A k m k m M
274 fvconst2g 0 m × 0 m = 0
275 13 274 sylan φ m × 0 m = 0
276 155 adantr φ m k 0 N M
277 53 adantl φ m k 0 N k
278 153 154 276 277 expsubd φ m k 0 N m k M = m k m M
279 278 oveq2d φ m k 0 N A k m k M = A k m k m M
280 264 adantr φ m k 0 N m M
281 266 adantr φ m k 0 N m M 0
282 152 270 280 281 divassd φ m k 0 N A k m k m M = A k m k m M
283 279 150 282 3eqtr4d φ m k 0 N n A k n k M m = A k m k m M
284 283 sumeq2dv φ m k = 0 N n A k n k M m = k = 0 N A k m k m M
285 273 275 284 3eqtr4d φ m × 0 m = k = 0 N n A k n k M m
286 8 9 10 244 247 248 285 climfsum φ × 0 k = 0 N if k M A k 0
287 suprleub A -1 S 0 A -1 S 0 x z A -1 S 0 z x N sup A -1 S 0 < N z A -1 S 0 z N
288 197 7 78 58 287 syl31anc φ sup A -1 S 0 < N z A -1 S 0 z N
289 76 288 mpbird φ sup A -1 S 0 < N
290 6 289 eqbrtrid φ M N
291 nn0uz 0 = 0
292 82 291 eleqtrdi φ M 0
293 2 nn0zd φ N
294 elfz5 M 0 N M 0 N M N
295 292 293 294 syl2anc φ M 0 N M N
296 290 295 mpbird φ M 0 N
297 296 snssd φ M 0 N
298 23 82 ffvelrnd φ A M
299 elsni k M k = M
300 299 fveq2d k M A k = A M
301 300 eleq1d k M A k A M
302 298 301 syl5ibrcom φ k M A k
303 302 ralrimiv φ k M A k
304 10 olcd φ 0 N 0 0 N Fin
305 sumss2 M 0 N k M A k 0 N 0 0 N Fin k M A k = k = 0 N if k M A k 0
306 297 303 304 305 syl21anc φ k M A k = k = 0 N if k M A k 0
307 ltso < Or
308 307 supex sup A -1 S 0 < V
309 6 308 eqeltri M V
310 fveq2 k = M A k = A M
311 310 sumsn M V A M k M A k = A M
312 309 298 311 sylancr φ k M A k = A M
313 306 312 eqtr3d φ k = 0 N if k M A k 0 = A M
314 286 313 breqtrd φ × 0 A M
315 240 32 climconst2 0 1 × 0 0
316 12 239 315 mp2an × 0 0
317 climuni × 0 A M × 0 0 A M = 0
318 314 316 317 sylancl φ A M = 0
319 fvex A M V
320 319 elsn A M 0 A M = 0
321 318 320 sylibr φ A M 0
322 elpreima A Fn 0 M A -1 S 0 M 0 A M S 0
323 59 322 syl φ M A -1 S 0 M 0 A M S 0
324 81 323 mpbid φ M 0 A M S 0
325 324 simprd φ A M S 0
326 325 eldifbd φ ¬ A M 0
327 321 326 pm2.65i ¬ φ