| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plyeq0.1 |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 2 |
|
plyeq0.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 3 |
|
plyeq0.3 |
⊢ ( 𝜑 → 𝐴 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) |
| 4 |
|
plyeq0.4 |
⊢ ( 𝜑 → ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) |
| 5 |
|
plyeq0.5 |
⊢ ( 𝜑 → 0𝑝 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 6 |
|
plyeq0.6 |
⊢ 𝑀 = sup ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) , ℝ , < ) |
| 7 |
|
plyeq0.7 |
⊢ ( 𝜑 → ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ≠ ∅ ) |
| 8 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 9 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 10 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ Fin ) |
| 11 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → 1 ∈ ℤ ) |
| 12 |
|
0cn |
⊢ 0 ∈ ℂ |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
| 14 |
13
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ℂ ) |
| 15 |
1 14
|
unssd |
⊢ ( 𝜑 → ( 𝑆 ∪ { 0 } ) ⊆ ℂ ) |
| 16 |
|
cnex |
⊢ ℂ ∈ V |
| 17 |
|
ssexg |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ⊆ ℂ ∧ ℂ ∈ V ) → ( 𝑆 ∪ { 0 } ) ∈ V ) |
| 18 |
15 16 17
|
sylancl |
⊢ ( 𝜑 → ( 𝑆 ∪ { 0 } ) ∈ V ) |
| 19 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 20 |
|
elmapg |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ∈ V ∧ ℕ0 ∈ V ) → ( 𝐴 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
| 21 |
18 19 20
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
| 22 |
3 21
|
mpbid |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
| 23 |
22 15
|
fssd |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
| 24 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
| 25 |
|
ffvelcdm |
⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 26 |
23 24 25
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 28 |
27
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ ) |
| 29 |
28
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) |
| 30 |
|
divcnv |
⊢ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) ) ⇝ 0 ) |
| 31 |
29 30
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) ) ⇝ 0 ) |
| 32 |
|
nnex |
⊢ ℕ ∈ V |
| 33 |
32
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ∈ V |
| 34 |
33
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ∈ V ) |
| 35 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑚 ) ) |
| 36 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) ) |
| 37 |
|
ovex |
⊢ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑚 ) ∈ V |
| 38 |
35 36 37
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) ) ‘ 𝑚 ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑚 ) ) |
| 39 |
38
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) ) ‘ 𝑚 ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑚 ) ) |
| 40 |
|
nndivre |
⊢ ( ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ ∧ 𝑚 ∈ ℕ ) → ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑚 ) ∈ ℝ ) |
| 41 |
28 40
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑚 ) ∈ ℝ ) |
| 42 |
39 41
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) ) ‘ 𝑚 ) ∈ ℝ ) |
| 43 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) = ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) |
| 44 |
43
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
| 45 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
| 46 |
|
ovex |
⊢ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ∈ V |
| 47 |
44 45 46
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
| 48 |
47
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
| 49 |
26
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 50 |
49
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ ) |
| 51 |
|
nnrp |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ+ ) |
| 52 |
51
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ+ ) |
| 53 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℤ ) |
| 54 |
|
cnvimass |
⊢ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ⊆ dom 𝐴 |
| 55 |
54 22
|
fssdm |
⊢ ( 𝜑 → ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ⊆ ℕ0 ) |
| 56 |
|
nn0ssz |
⊢ ℕ0 ⊆ ℤ |
| 57 |
55 56
|
sstrdi |
⊢ ( 𝜑 → ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ⊆ ℤ ) |
| 58 |
2
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 59 |
22
|
ffnd |
⊢ ( 𝜑 → 𝐴 Fn ℕ0 ) |
| 60 |
|
elpreima |
⊢ ( 𝐴 Fn ℕ0 → ( 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ↔ ( 𝑧 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑧 ) ∈ ( 𝑆 ∖ { 0 } ) ) ) ) |
| 61 |
59 60
|
syl |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ↔ ( 𝑧 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑧 ) ∈ ( 𝑆 ∖ { 0 } ) ) ) ) |
| 62 |
61
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) → ( 𝐴 ‘ 𝑧 ) ∈ ( 𝑆 ∖ { 0 } ) ) |
| 63 |
|
eldifsni |
⊢ ( ( 𝐴 ‘ 𝑧 ) ∈ ( 𝑆 ∖ { 0 } ) → ( 𝐴 ‘ 𝑧 ) ≠ 0 ) |
| 64 |
62 63
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) → ( 𝐴 ‘ 𝑧 ) ≠ 0 ) |
| 65 |
|
fveq2 |
⊢ ( 𝑘 = 𝑧 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑧 ) ) |
| 66 |
65
|
neeq1d |
⊢ ( 𝑘 = 𝑧 → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 ↔ ( 𝐴 ‘ 𝑧 ) ≠ 0 ) ) |
| 67 |
|
breq1 |
⊢ ( 𝑘 = 𝑧 → ( 𝑘 ≤ 𝑁 ↔ 𝑧 ≤ 𝑁 ) ) |
| 68 |
66 67
|
imbi12d |
⊢ ( 𝑘 = 𝑧 → ( ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ↔ ( ( 𝐴 ‘ 𝑧 ) ≠ 0 → 𝑧 ≤ 𝑁 ) ) ) |
| 69 |
|
plyco0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) ) |
| 70 |
2 23 69
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) ) |
| 71 |
4 70
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
| 72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) → ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
| 73 |
55
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) → 𝑧 ∈ ℕ0 ) |
| 74 |
68 72 73
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) → ( ( 𝐴 ‘ 𝑧 ) ≠ 0 → 𝑧 ≤ 𝑁 ) ) |
| 75 |
64 74
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) → 𝑧 ≤ 𝑁 ) |
| 76 |
75
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) 𝑧 ≤ 𝑁 ) |
| 77 |
|
brralrspcev |
⊢ ( ( 𝑁 ∈ ℝ ∧ ∀ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) 𝑧 ≤ 𝑁 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) 𝑧 ≤ 𝑥 ) |
| 78 |
58 76 77
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) 𝑧 ≤ 𝑥 ) |
| 79 |
|
suprzcl |
⊢ ( ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ⊆ ℤ ∧ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) 𝑧 ≤ 𝑥 ) → sup ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) , ℝ , < ) ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) |
| 80 |
57 7 78 79
|
syl3anc |
⊢ ( 𝜑 → sup ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) , ℝ , < ) ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) |
| 81 |
6 80
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) |
| 82 |
55 81
|
sseldd |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 83 |
82
|
nn0zd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 84 |
|
zsubcl |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑘 − 𝑀 ) ∈ ℤ ) |
| 85 |
53 83 84
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑘 − 𝑀 ) ∈ ℤ ) |
| 86 |
85
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑘 − 𝑀 ) ∈ ℤ ) |
| 87 |
52 86
|
rpexpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ∈ ℝ+ ) |
| 88 |
87
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ∈ ℝ ) |
| 89 |
50 88
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ∈ ℝ ) |
| 90 |
48 89
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ∈ ℝ ) |
| 91 |
|
nnrecre |
⊢ ( 𝑚 ∈ ℕ → ( 1 / 𝑚 ) ∈ ℝ ) |
| 92 |
91
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 1 / 𝑚 ) ∈ ℝ ) |
| 93 |
27
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → 0 ≤ ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 94 |
93
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 0 ≤ ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 95 |
|
nnre |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) |
| 96 |
95
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ ) |
| 97 |
|
nnge1 |
⊢ ( 𝑚 ∈ ℕ → 1 ≤ 𝑚 ) |
| 98 |
97
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 1 ≤ 𝑚 ) |
| 99 |
|
1red |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 1 ∈ ℝ ) |
| 100 |
86
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑘 − 𝑀 ) ∈ ℝ ) |
| 101 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑘 < 𝑀 ) |
| 102 |
53
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℤ ) |
| 103 |
102
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑘 ∈ ℤ ) |
| 104 |
83
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
| 105 |
|
zltp1le |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑘 < 𝑀 ↔ ( 𝑘 + 1 ) ≤ 𝑀 ) ) |
| 106 |
103 104 105
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑘 < 𝑀 ↔ ( 𝑘 + 1 ) ≤ 𝑀 ) ) |
| 107 |
101 106
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑘 + 1 ) ≤ 𝑀 ) |
| 108 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 109 |
108
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℝ ) |
| 110 |
109
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑘 ∈ ℝ ) |
| 111 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑀 ∈ ℕ0 ) |
| 112 |
111
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑀 ∈ ℝ ) |
| 113 |
112
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑀 ∈ ℝ ) |
| 114 |
110 99 113
|
leaddsub2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑘 + 1 ) ≤ 𝑀 ↔ 1 ≤ ( 𝑀 − 𝑘 ) ) ) |
| 115 |
107 114
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 1 ≤ ( 𝑀 − 𝑘 ) ) |
| 116 |
109
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℂ ) |
| 117 |
116
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 118 |
112
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑀 ∈ ℂ ) |
| 119 |
118
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑀 ∈ ℂ ) |
| 120 |
117 119
|
negsubdi2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → - ( 𝑘 − 𝑀 ) = ( 𝑀 − 𝑘 ) ) |
| 121 |
115 120
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 1 ≤ - ( 𝑘 − 𝑀 ) ) |
| 122 |
99 100 121
|
lenegcon2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑘 − 𝑀 ) ≤ - 1 ) |
| 123 |
|
neg1z |
⊢ - 1 ∈ ℤ |
| 124 |
|
eluz |
⊢ ( ( ( 𝑘 − 𝑀 ) ∈ ℤ ∧ - 1 ∈ ℤ ) → ( - 1 ∈ ( ℤ≥ ‘ ( 𝑘 − 𝑀 ) ) ↔ ( 𝑘 − 𝑀 ) ≤ - 1 ) ) |
| 125 |
86 123 124
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( - 1 ∈ ( ℤ≥ ‘ ( 𝑘 − 𝑀 ) ) ↔ ( 𝑘 − 𝑀 ) ≤ - 1 ) ) |
| 126 |
122 125
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → - 1 ∈ ( ℤ≥ ‘ ( 𝑘 − 𝑀 ) ) ) |
| 127 |
96 98 126
|
leexp2ad |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ≤ ( 𝑚 ↑ - 1 ) ) |
| 128 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
| 129 |
128
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
| 130 |
|
expn1 |
⊢ ( 𝑚 ∈ ℂ → ( 𝑚 ↑ - 1 ) = ( 1 / 𝑚 ) ) |
| 131 |
129 130
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ↑ - 1 ) = ( 1 / 𝑚 ) ) |
| 132 |
127 131
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ≤ ( 1 / 𝑚 ) ) |
| 133 |
88 92 50 94 132
|
lemul2ad |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ≤ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 1 / 𝑚 ) ) ) |
| 134 |
29
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) |
| 135 |
|
nnne0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ≠ 0 ) |
| 136 |
135
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ≠ 0 ) |
| 137 |
134 129 136
|
divrecd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑚 ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 1 / 𝑚 ) ) ) |
| 138 |
39 137
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) ) ‘ 𝑚 ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 1 / 𝑚 ) ) ) |
| 139 |
133 48 138
|
3brtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) ) ‘ 𝑚 ) ) |
| 140 |
87
|
rpge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 0 ≤ ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) |
| 141 |
50 88 94 140
|
mulge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 0 ≤ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
| 142 |
141 48
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 0 ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ) |
| 143 |
8 11 31 34 42 90 139 142
|
climsqz2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ⇝ 0 ) |
| 144 |
32
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ∈ V |
| 145 |
144
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ∈ V ) |
| 146 |
43
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
| 147 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
| 148 |
|
ovex |
⊢ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ∈ V |
| 149 |
146 147 148
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
| 150 |
149
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
| 151 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 152 |
151 24 25
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 153 |
128
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑚 ∈ ℂ ) |
| 154 |
135
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑚 ≠ 0 ) |
| 155 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
| 156 |
53 155 84
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑘 − 𝑀 ) ∈ ℤ ) |
| 157 |
153 154 156
|
expclzd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ∈ ℂ ) |
| 158 |
152 157
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ∈ ℂ ) |
| 159 |
150 158
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 160 |
159
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 161 |
160
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 162 |
88
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ∈ ℂ ) |
| 163 |
49 162
|
absmuld |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( abs ‘ ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) ) |
| 164 |
88 140
|
absidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( abs ‘ ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) = ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) |
| 165 |
164
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( abs ‘ ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
| 166 |
163 165
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
| 167 |
149
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
| 168 |
167
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( abs ‘ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ) = ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) ) |
| 169 |
166 168 48
|
3eqtr4rd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) = ( abs ‘ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ) ) |
| 170 |
8 11 145 34 161 169
|
climabs0 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ⇝ 0 ↔ ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ⇝ 0 ) ) |
| 171 |
143 170
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ⇝ 0 ) |
| 172 |
109
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → 𝑘 ∈ ℝ ) |
| 173 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → 𝑘 < 𝑀 ) |
| 174 |
172 173
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → 𝑘 ≠ 𝑀 ) |
| 175 |
|
velsn |
⊢ ( 𝑘 ∈ { 𝑀 } ↔ 𝑘 = 𝑀 ) |
| 176 |
175
|
necon3bbii |
⊢ ( ¬ 𝑘 ∈ { 𝑀 } ↔ 𝑘 ≠ 𝑀 ) |
| 177 |
174 176
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ¬ 𝑘 ∈ { 𝑀 } ) |
| 178 |
177
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) = 0 ) |
| 179 |
171 178
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ⇝ if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
| 180 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 181 |
180
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → 𝑛 ∈ ℂ ) |
| 182 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
| 183 |
182
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → 𝑛 ≠ 0 ) |
| 184 |
85
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → ( 𝑘 − 𝑀 ) ∈ ℤ ) |
| 185 |
181 183 184
|
expclzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ∈ ℂ ) |
| 186 |
185
|
mul02d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → ( 0 · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) = 0 ) |
| 187 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → ( 𝐴 ‘ 𝑘 ) = 0 ) |
| 188 |
187
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) = ( 0 · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
| 189 |
187
|
ifeq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) = if ( 𝑘 ∈ { 𝑀 } , 0 , 0 ) ) |
| 190 |
|
ifid |
⊢ if ( 𝑘 ∈ { 𝑀 } , 0 , 0 ) = 0 |
| 191 |
189 190
|
eqtrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) = 0 ) |
| 192 |
186 188 191
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) = if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
| 193 |
26
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 194 |
193
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 195 |
194
|
mulridd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( ( 𝐴 ‘ 𝑘 ) · 1 ) = ( 𝐴 ‘ 𝑘 ) ) |
| 196 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
| 197 |
55 196
|
sstrdi |
⊢ ( 𝜑 → ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ⊆ ℝ ) |
| 198 |
197
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ⊆ ℝ ) |
| 199 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ≠ ∅ ) |
| 200 |
78
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) 𝑧 ≤ 𝑥 ) |
| 201 |
24
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑘 ∈ ℕ0 ) |
| 202 |
|
ffvelcdm |
⊢ ( ( 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∪ { 0 } ) ) |
| 203 |
22 24 202
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∪ { 0 } ) ) |
| 204 |
203
|
anim1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∪ { 0 } ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) |
| 205 |
|
eldifsn |
⊢ ( ( 𝐴 ‘ 𝑘 ) ∈ ( ( 𝑆 ∪ { 0 } ) ∖ { 0 } ) ↔ ( ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∪ { 0 } ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) |
| 206 |
204 205
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ( ( 𝑆 ∪ { 0 } ) ∖ { 0 } ) ) |
| 207 |
|
difun2 |
⊢ ( ( 𝑆 ∪ { 0 } ) ∖ { 0 } ) = ( 𝑆 ∖ { 0 } ) |
| 208 |
206 207
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∖ { 0 } ) ) |
| 209 |
|
elpreima |
⊢ ( 𝐴 Fn ℕ0 → ( 𝑘 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ↔ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∖ { 0 } ) ) ) ) |
| 210 |
59 209
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ↔ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∖ { 0 } ) ) ) ) |
| 211 |
210
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝑘 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ↔ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∖ { 0 } ) ) ) ) |
| 212 |
201 208 211
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑘 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) |
| 213 |
198 199 200 212
|
suprubd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑘 ≤ sup ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) , ℝ , < ) ) |
| 214 |
213 6
|
breqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑘 ≤ 𝑀 ) |
| 215 |
214
|
ad4ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑘 ≤ 𝑀 ) |
| 216 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑀 ≤ 𝑘 ) |
| 217 |
109
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑘 ∈ ℝ ) |
| 218 |
112
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑀 ∈ ℝ ) |
| 219 |
217 218
|
letri3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝑘 = 𝑀 ↔ ( 𝑘 ≤ 𝑀 ∧ 𝑀 ≤ 𝑘 ) ) ) |
| 220 |
215 216 219
|
mpbir2and |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑘 = 𝑀 ) |
| 221 |
220
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝑘 − 𝑀 ) = ( 𝑀 − 𝑀 ) ) |
| 222 |
118
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑀 ∈ ℂ ) |
| 223 |
222
|
subidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝑀 − 𝑀 ) = 0 ) |
| 224 |
221 223
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝑘 − 𝑀 ) = 0 ) |
| 225 |
224
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) = ( 𝑛 ↑ 0 ) ) |
| 226 |
180
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑛 ∈ ℂ ) |
| 227 |
226
|
exp0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝑛 ↑ 0 ) = 1 ) |
| 228 |
225 227
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) = 1 ) |
| 229 |
228
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) = ( ( 𝐴 ‘ 𝑘 ) · 1 ) ) |
| 230 |
220 175
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑘 ∈ { 𝑀 } ) |
| 231 |
230
|
iftrued |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) = ( 𝐴 ‘ 𝑘 ) ) |
| 232 |
195 229 231
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) = if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
| 233 |
192 232
|
pm2.61dane |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) = if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
| 234 |
233
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) ) |
| 235 |
|
fconstmpt |
⊢ ( ℕ × { if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) } ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
| 236 |
234 235
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) = ( ℕ × { if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) } ) ) |
| 237 |
|
ifcl |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℂ ∧ 0 ∈ ℂ ) → if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ∈ ℂ ) |
| 238 |
193 12 237
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) → if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ∈ ℂ ) |
| 239 |
|
1z |
⊢ 1 ∈ ℤ |
| 240 |
8
|
eqimss2i |
⊢ ( ℤ≥ ‘ 1 ) ⊆ ℕ |
| 241 |
240 32
|
climconst2 |
⊢ ( ( if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ∈ ℂ ∧ 1 ∈ ℤ ) → ( ℕ × { if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) } ) ⇝ if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
| 242 |
238 239 241
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) → ( ℕ × { if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) } ) ⇝ if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
| 243 |
236 242
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ⇝ if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
| 244 |
179 243 109 112
|
ltlecasei |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ⇝ if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
| 245 |
|
snex |
⊢ { 0 } ∈ V |
| 246 |
32 245
|
xpex |
⊢ ( ℕ × { 0 } ) ∈ V |
| 247 |
246
|
a1i |
⊢ ( 𝜑 → ( ℕ × { 0 } ) ∈ V ) |
| 248 |
160
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑚 ∈ ℕ ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 249 |
5
|
fveq1d |
⊢ ( 𝜑 → ( 0𝑝 ‘ 𝑚 ) = ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑚 ) ) |
| 250 |
249
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 0𝑝 ‘ 𝑚 ) = ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑚 ) ) |
| 251 |
128
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
| 252 |
|
0pval |
⊢ ( 𝑚 ∈ ℂ → ( 0𝑝 ‘ 𝑚 ) = 0 ) |
| 253 |
251 252
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 0𝑝 ‘ 𝑚 ) = 0 ) |
| 254 |
|
oveq1 |
⊢ ( 𝑧 = 𝑚 → ( 𝑧 ↑ 𝑘 ) = ( 𝑚 ↑ 𝑘 ) ) |
| 255 |
254
|
oveq2d |
⊢ ( 𝑧 = 𝑚 → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) ) |
| 256 |
255
|
sumeq2sdv |
⊢ ( 𝑧 = 𝑚 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) ) |
| 257 |
|
eqid |
⊢ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 258 |
|
sumex |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) ∈ V |
| 259 |
256 257 258
|
fvmpt |
⊢ ( 𝑚 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑚 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) ) |
| 260 |
251 259
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑚 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) ) |
| 261 |
250 253 260
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 0 = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) ) |
| 262 |
261
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 0 / ( 𝑚 ↑ 𝑀 ) ) = ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) / ( 𝑚 ↑ 𝑀 ) ) ) |
| 263 |
|
expcl |
⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑚 ↑ 𝑀 ) ∈ ℂ ) |
| 264 |
128 82 263
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ↑ 𝑀 ) ∈ ℂ ) |
| 265 |
135
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ≠ 0 ) |
| 266 |
251 265 155
|
expne0d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ↑ 𝑀 ) ≠ 0 ) |
| 267 |
264 266
|
div0d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 0 / ( 𝑚 ↑ 𝑀 ) ) = 0 ) |
| 268 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 0 ... 𝑁 ) ∈ Fin ) |
| 269 |
|
expcl |
⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑚 ↑ 𝑘 ) ∈ ℂ ) |
| 270 |
251 24 269
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑚 ↑ 𝑘 ) ∈ ℂ ) |
| 271 |
152 270
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) ∈ ℂ ) |
| 272 |
268 264 271 266
|
fsumdivc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) / ( 𝑚 ↑ 𝑀 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) / ( 𝑚 ↑ 𝑀 ) ) ) |
| 273 |
262 267 272
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 0 = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) / ( 𝑚 ↑ 𝑀 ) ) ) |
| 274 |
|
fvconst2g |
⊢ ( ( 0 ∈ ℂ ∧ 𝑚 ∈ ℕ ) → ( ( ℕ × { 0 } ) ‘ 𝑚 ) = 0 ) |
| 275 |
13 274
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ℕ × { 0 } ) ‘ 𝑚 ) = 0 ) |
| 276 |
155
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑀 ∈ ℤ ) |
| 277 |
53
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℤ ) |
| 278 |
153 154 276 277
|
expsubd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) = ( ( 𝑚 ↑ 𝑘 ) / ( 𝑚 ↑ 𝑀 ) ) ) |
| 279 |
278
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( ( 𝑚 ↑ 𝑘 ) / ( 𝑚 ↑ 𝑀 ) ) ) ) |
| 280 |
264
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑚 ↑ 𝑀 ) ∈ ℂ ) |
| 281 |
266
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑚 ↑ 𝑀 ) ≠ 0 ) |
| 282 |
152 270 280 281
|
divassd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) / ( 𝑚 ↑ 𝑀 ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( ( 𝑚 ↑ 𝑘 ) / ( 𝑚 ↑ 𝑀 ) ) ) ) |
| 283 |
279 150 282
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) = ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) / ( 𝑚 ↑ 𝑀 ) ) ) |
| 284 |
283
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) / ( 𝑚 ↑ 𝑀 ) ) ) |
| 285 |
273 275 284
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ℕ × { 0 } ) ‘ 𝑚 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ) |
| 286 |
8 9 10 244 247 248 285
|
climfsum |
⊢ ( 𝜑 → ( ℕ × { 0 } ) ⇝ Σ 𝑘 ∈ ( 0 ... 𝑁 ) if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
| 287 |
|
suprleub |
⊢ ( ( ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ⊆ ℝ ∧ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) 𝑧 ≤ 𝑥 ) ∧ 𝑁 ∈ ℝ ) → ( sup ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) , ℝ , < ) ≤ 𝑁 ↔ ∀ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) 𝑧 ≤ 𝑁 ) ) |
| 288 |
197 7 78 58 287
|
syl31anc |
⊢ ( 𝜑 → ( sup ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) , ℝ , < ) ≤ 𝑁 ↔ ∀ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) 𝑧 ≤ 𝑁 ) ) |
| 289 |
76 288
|
mpbird |
⊢ ( 𝜑 → sup ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) , ℝ , < ) ≤ 𝑁 ) |
| 290 |
6 289
|
eqbrtrid |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
| 291 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 292 |
82 291
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
| 293 |
2
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 294 |
|
elfz5 |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∈ ( 0 ... 𝑁 ) ↔ 𝑀 ≤ 𝑁 ) ) |
| 295 |
292 293 294
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 0 ... 𝑁 ) ↔ 𝑀 ≤ 𝑁 ) ) |
| 296 |
290 295
|
mpbird |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑁 ) ) |
| 297 |
296
|
snssd |
⊢ ( 𝜑 → { 𝑀 } ⊆ ( 0 ... 𝑁 ) ) |
| 298 |
23 82
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑀 ) ∈ ℂ ) |
| 299 |
|
elsni |
⊢ ( 𝑘 ∈ { 𝑀 } → 𝑘 = 𝑀 ) |
| 300 |
299
|
fveq2d |
⊢ ( 𝑘 ∈ { 𝑀 } → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑀 ) ) |
| 301 |
300
|
eleq1d |
⊢ ( 𝑘 ∈ { 𝑀 } → ( ( 𝐴 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐴 ‘ 𝑀 ) ∈ ℂ ) ) |
| 302 |
298 301
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑘 ∈ { 𝑀 } → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) ) |
| 303 |
302
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑘 ∈ { 𝑀 } ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 304 |
10
|
olcd |
⊢ ( 𝜑 → ( ( 0 ... 𝑁 ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( 0 ... 𝑁 ) ∈ Fin ) ) |
| 305 |
|
sumss2 |
⊢ ( ( ( { 𝑀 } ⊆ ( 0 ... 𝑁 ) ∧ ∀ 𝑘 ∈ { 𝑀 } ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) ∧ ( ( 0 ... 𝑁 ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( 0 ... 𝑁 ) ∈ Fin ) ) → Σ 𝑘 ∈ { 𝑀 } ( 𝐴 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
| 306 |
297 303 304 305
|
syl21anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑀 } ( 𝐴 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
| 307 |
|
ltso |
⊢ < Or ℝ |
| 308 |
307
|
supex |
⊢ sup ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) , ℝ , < ) ∈ V |
| 309 |
6 308
|
eqeltri |
⊢ 𝑀 ∈ V |
| 310 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑀 ) ) |
| 311 |
310
|
sumsn |
⊢ ( ( 𝑀 ∈ V ∧ ( 𝐴 ‘ 𝑀 ) ∈ ℂ ) → Σ 𝑘 ∈ { 𝑀 } ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑀 ) ) |
| 312 |
309 298 311
|
sylancr |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑀 } ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑀 ) ) |
| 313 |
306 312
|
eqtr3d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) = ( 𝐴 ‘ 𝑀 ) ) |
| 314 |
286 313
|
breqtrd |
⊢ ( 𝜑 → ( ℕ × { 0 } ) ⇝ ( 𝐴 ‘ 𝑀 ) ) |
| 315 |
240 32
|
climconst2 |
⊢ ( ( 0 ∈ ℂ ∧ 1 ∈ ℤ ) → ( ℕ × { 0 } ) ⇝ 0 ) |
| 316 |
12 239 315
|
mp2an |
⊢ ( ℕ × { 0 } ) ⇝ 0 |
| 317 |
|
climuni |
⊢ ( ( ( ℕ × { 0 } ) ⇝ ( 𝐴 ‘ 𝑀 ) ∧ ( ℕ × { 0 } ) ⇝ 0 ) → ( 𝐴 ‘ 𝑀 ) = 0 ) |
| 318 |
314 316 317
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑀 ) = 0 ) |
| 319 |
|
fvex |
⊢ ( 𝐴 ‘ 𝑀 ) ∈ V |
| 320 |
319
|
elsn |
⊢ ( ( 𝐴 ‘ 𝑀 ) ∈ { 0 } ↔ ( 𝐴 ‘ 𝑀 ) = 0 ) |
| 321 |
318 320
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑀 ) ∈ { 0 } ) |
| 322 |
|
elpreima |
⊢ ( 𝐴 Fn ℕ0 → ( 𝑀 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ↔ ( 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ∈ ( 𝑆 ∖ { 0 } ) ) ) ) |
| 323 |
59 322
|
syl |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ↔ ( 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ∈ ( 𝑆 ∖ { 0 } ) ) ) ) |
| 324 |
81 323
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ∈ ( 𝑆 ∖ { 0 } ) ) ) |
| 325 |
324
|
simprd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑀 ) ∈ ( 𝑆 ∖ { 0 } ) ) |
| 326 |
325
|
eldifbd |
⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 𝑀 ) ∈ { 0 } ) |
| 327 |
321 326
|
pm2.65i |
⊢ ¬ 𝜑 |