| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) ∧ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) → ( 𝐴 ‘ 𝑘 ) ≠ 0 ) |
| 2 |
|
ffun |
⊢ ( 𝐴 : ℕ0 ⟶ ℂ → Fun 𝐴 ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → Fun 𝐴 ) |
| 4 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 6 |
|
eluznn0 |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 7 |
6
|
ex |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → 𝑘 ∈ ℕ0 ) ) |
| 8 |
5 7
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → 𝑘 ∈ ℕ0 ) ) |
| 9 |
8
|
ssrdv |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ℕ0 ) |
| 10 |
|
fdm |
⊢ ( 𝐴 : ℕ0 ⟶ ℂ → dom 𝐴 = ℕ0 ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → dom 𝐴 = ℕ0 ) |
| 12 |
9 11
|
sseqtrrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ dom 𝐴 ) |
| 13 |
|
funfvima2 |
⊢ ( ( Fun 𝐴 ∧ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ dom 𝐴 ) → ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 14 |
3 12 13
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 15 |
14
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) ∧ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) → ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 16 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → 𝑁 ∈ ℤ ) |
| 18 |
17
|
peano2zd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( 𝑁 + 1 ) ∈ ℤ ) |
| 19 |
18
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) ∧ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) → ( 𝑁 + 1 ) ∈ ℤ ) |
| 20 |
|
nn0z |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) |
| 21 |
20
|
ad2antrl |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) ∧ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) → 𝑘 ∈ ℤ ) |
| 22 |
|
eluz |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ↔ ( 𝑁 + 1 ) ≤ 𝑘 ) ) |
| 23 |
19 21 22
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) ∧ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) → ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ↔ ( 𝑁 + 1 ) ≤ 𝑘 ) ) |
| 24 |
|
simplr |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) ∧ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) → ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) |
| 25 |
24
|
eleq2d |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) ∧ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) → ( ( 𝐴 ‘ 𝑘 ) ∈ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ↔ ( 𝐴 ‘ 𝑘 ) ∈ { 0 } ) ) |
| 26 |
|
fvex |
⊢ ( 𝐴 ‘ 𝑘 ) ∈ V |
| 27 |
26
|
elsn |
⊢ ( ( 𝐴 ‘ 𝑘 ) ∈ { 0 } ↔ ( 𝐴 ‘ 𝑘 ) = 0 ) |
| 28 |
25 27
|
bitrdi |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) ∧ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) → ( ( 𝐴 ‘ 𝑘 ) ∈ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ↔ ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
| 29 |
15 23 28
|
3imtr3d |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) ∧ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) → ( ( 𝑁 + 1 ) ≤ 𝑘 → ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
| 30 |
29
|
necon3ad |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) ∧ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → ¬ ( 𝑁 + 1 ) ≤ 𝑘 ) ) |
| 31 |
1 30
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) ∧ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) → ¬ ( 𝑁 + 1 ) ≤ 𝑘 ) |
| 32 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
| 33 |
32
|
ad2antrl |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) ∧ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) → 𝑘 ∈ ℝ ) |
| 34 |
18
|
zred |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( 𝑁 + 1 ) ∈ ℝ ) |
| 35 |
34
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) ∧ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) → ( 𝑁 + 1 ) ∈ ℝ ) |
| 36 |
33 35
|
ltnled |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) ∧ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) → ( 𝑘 < ( 𝑁 + 1 ) ↔ ¬ ( 𝑁 + 1 ) ≤ 𝑘 ) ) |
| 37 |
31 36
|
mpbird |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) ∧ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) → 𝑘 < ( 𝑁 + 1 ) ) |
| 38 |
17
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) ∧ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) → 𝑁 ∈ ℤ ) |
| 39 |
|
zleltp1 |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑘 ≤ 𝑁 ↔ 𝑘 < ( 𝑁 + 1 ) ) ) |
| 40 |
21 38 39
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) ∧ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) → ( 𝑘 ≤ 𝑁 ↔ 𝑘 < ( 𝑁 + 1 ) ) ) |
| 41 |
37 40
|
mpbird |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) ∧ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) → 𝑘 ≤ 𝑁 ) |
| 42 |
41
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
| 43 |
42
|
ralrimiva |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) → ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
| 44 |
|
simpr |
⊢ ( ( ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
| 45 |
|
eluznn0 |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑛 ∈ ℕ0 ) |
| 46 |
5 44 45
|
syl2an |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) → 𝑛 ∈ ℕ0 ) |
| 47 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → 𝑁 ∈ ℝ ) |
| 49 |
48
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) → 𝑁 ∈ ℝ ) |
| 50 |
34
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) → ( 𝑁 + 1 ) ∈ ℝ ) |
| 51 |
46
|
nn0red |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) → 𝑛 ∈ ℝ ) |
| 52 |
49
|
ltp1d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) → 𝑁 < ( 𝑁 + 1 ) ) |
| 53 |
|
eluzle |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( 𝑁 + 1 ) ≤ 𝑛 ) |
| 54 |
53
|
ad2antll |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) → ( 𝑁 + 1 ) ≤ 𝑛 ) |
| 55 |
49 50 51 52 54
|
ltletrd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) → 𝑁 < 𝑛 ) |
| 56 |
49 51
|
ltnled |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) → ( 𝑁 < 𝑛 ↔ ¬ 𝑛 ≤ 𝑁 ) ) |
| 57 |
55 56
|
mpbid |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) → ¬ 𝑛 ≤ 𝑁 ) |
| 58 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑛 ) ) |
| 59 |
58
|
neeq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 ↔ ( 𝐴 ‘ 𝑛 ) ≠ 0 ) ) |
| 60 |
|
breq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 ≤ 𝑁 ↔ 𝑛 ≤ 𝑁 ) ) |
| 61 |
59 60
|
imbi12d |
⊢ ( 𝑘 = 𝑛 → ( ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ↔ ( ( 𝐴 ‘ 𝑛 ) ≠ 0 → 𝑛 ≤ 𝑁 ) ) ) |
| 62 |
|
simprl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) → ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
| 63 |
61 62 46
|
rspcdva |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) → ( ( 𝐴 ‘ 𝑛 ) ≠ 0 → 𝑛 ≤ 𝑁 ) ) |
| 64 |
63
|
necon1bd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) → ( ¬ 𝑛 ≤ 𝑁 → ( 𝐴 ‘ 𝑛 ) = 0 ) ) |
| 65 |
57 64
|
mpd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) → ( 𝐴 ‘ 𝑛 ) = 0 ) |
| 66 |
|
ffn |
⊢ ( 𝐴 : ℕ0 ⟶ ℂ → 𝐴 Fn ℕ0 ) |
| 67 |
66
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) → 𝐴 Fn ℕ0 ) |
| 68 |
|
fniniseg |
⊢ ( 𝐴 Fn ℕ0 → ( 𝑛 ∈ ( ◡ 𝐴 “ { 0 } ) ↔ ( 𝑛 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑛 ) = 0 ) ) ) |
| 69 |
67 68
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) → ( 𝑛 ∈ ( ◡ 𝐴 “ { 0 } ) ↔ ( 𝑛 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑛 ) = 0 ) ) ) |
| 70 |
46 65 69
|
mpbir2and |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) → 𝑛 ∈ ( ◡ 𝐴 “ { 0 } ) ) |
| 71 |
70
|
expr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) → ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → 𝑛 ∈ ( ◡ 𝐴 “ { 0 } ) ) ) |
| 72 |
71
|
ssrdv |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ( ◡ 𝐴 “ { 0 } ) ) |
| 73 |
|
funimass3 |
⊢ ( ( Fun 𝐴 ∧ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ dom 𝐴 ) → ( ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ⊆ { 0 } ↔ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ( ◡ 𝐴 “ { 0 } ) ) ) |
| 74 |
3 12 73
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ⊆ { 0 } ↔ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ( ◡ 𝐴 “ { 0 } ) ) ) |
| 75 |
74
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) → ( ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ⊆ { 0 } ↔ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ( ◡ 𝐴 “ { 0 } ) ) ) |
| 76 |
72 75
|
mpbird |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) → ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ⊆ { 0 } ) |
| 77 |
48
|
ltp1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → 𝑁 < ( 𝑁 + 1 ) ) |
| 78 |
48 34
|
ltnled |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( 𝑁 < ( 𝑁 + 1 ) ↔ ¬ ( 𝑁 + 1 ) ≤ 𝑁 ) ) |
| 79 |
77 78
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ¬ ( 𝑁 + 1 ) ≤ 𝑁 ) |
| 80 |
79
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) → ¬ ( 𝑁 + 1 ) ≤ 𝑁 ) |
| 81 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ ( 𝑁 + 1 ) ) ) |
| 82 |
81
|
neeq1d |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 ↔ ( 𝐴 ‘ ( 𝑁 + 1 ) ) ≠ 0 ) ) |
| 83 |
|
breq1 |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( 𝑘 ≤ 𝑁 ↔ ( 𝑁 + 1 ) ≤ 𝑁 ) ) |
| 84 |
82 83
|
imbi12d |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ↔ ( ( 𝐴 ‘ ( 𝑁 + 1 ) ) ≠ 0 → ( 𝑁 + 1 ) ≤ 𝑁 ) ) ) |
| 85 |
84
|
rspcva |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) → ( ( 𝐴 ‘ ( 𝑁 + 1 ) ) ≠ 0 → ( 𝑁 + 1 ) ≤ 𝑁 ) ) |
| 86 |
5 85
|
sylan |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) → ( ( 𝐴 ‘ ( 𝑁 + 1 ) ) ≠ 0 → ( 𝑁 + 1 ) ≤ 𝑁 ) ) |
| 87 |
86
|
necon1bd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) → ( ¬ ( 𝑁 + 1 ) ≤ 𝑁 → ( 𝐴 ‘ ( 𝑁 + 1 ) ) = 0 ) ) |
| 88 |
80 87
|
mpd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) → ( 𝐴 ‘ ( 𝑁 + 1 ) ) = 0 ) |
| 89 |
|
uzid |
⊢ ( ( 𝑁 + 1 ) ∈ ℤ → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
| 90 |
18 89
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
| 91 |
|
funfvima2 |
⊢ ( ( Fun 𝐴 ∧ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ dom 𝐴 ) → ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( 𝐴 ‘ ( 𝑁 + 1 ) ) ∈ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 92 |
3 12 91
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( 𝐴 ‘ ( 𝑁 + 1 ) ) ∈ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 93 |
90 92
|
mpd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( 𝐴 ‘ ( 𝑁 + 1 ) ) ∈ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 94 |
93
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) → ( 𝐴 ‘ ( 𝑁 + 1 ) ) ∈ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 95 |
88 94
|
eqeltrrd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) → 0 ∈ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 96 |
95
|
snssd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) → { 0 } ⊆ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 97 |
76 96
|
eqssd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) ∧ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) → ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) |
| 98 |
43 97
|
impbida |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) ) |