| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprr |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( A ` k ) =/= 0 ) |
| 2 |
|
ffun |
|- ( A : NN0 --> CC -> Fun A ) |
| 3 |
2
|
adantl |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> Fun A ) |
| 4 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
| 5 |
4
|
adantr |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( N + 1 ) e. NN0 ) |
| 6 |
|
eluznn0 |
|- ( ( ( N + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. NN0 ) |
| 7 |
6
|
ex |
|- ( ( N + 1 ) e. NN0 -> ( k e. ( ZZ>= ` ( N + 1 ) ) -> k e. NN0 ) ) |
| 8 |
5 7
|
syl |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( k e. ( ZZ>= ` ( N + 1 ) ) -> k e. NN0 ) ) |
| 9 |
8
|
ssrdv |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( ZZ>= ` ( N + 1 ) ) C_ NN0 ) |
| 10 |
|
fdm |
|- ( A : NN0 --> CC -> dom A = NN0 ) |
| 11 |
10
|
adantl |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> dom A = NN0 ) |
| 12 |
9 11
|
sseqtrrd |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( ZZ>= ` ( N + 1 ) ) C_ dom A ) |
| 13 |
|
funfvima2 |
|- ( ( Fun A /\ ( ZZ>= ` ( N + 1 ) ) C_ dom A ) -> ( k e. ( ZZ>= ` ( N + 1 ) ) -> ( A ` k ) e. ( A " ( ZZ>= ` ( N + 1 ) ) ) ) ) |
| 14 |
3 12 13
|
syl2anc |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( k e. ( ZZ>= ` ( N + 1 ) ) -> ( A ` k ) e. ( A " ( ZZ>= ` ( N + 1 ) ) ) ) ) |
| 15 |
14
|
ad2antrr |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( k e. ( ZZ>= ` ( N + 1 ) ) -> ( A ` k ) e. ( A " ( ZZ>= ` ( N + 1 ) ) ) ) ) |
| 16 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
| 17 |
16
|
adantr |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> N e. ZZ ) |
| 18 |
17
|
peano2zd |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( N + 1 ) e. ZZ ) |
| 19 |
18
|
ad2antrr |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( N + 1 ) e. ZZ ) |
| 20 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
| 21 |
20
|
ad2antrl |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> k e. ZZ ) |
| 22 |
|
eluz |
|- ( ( ( N + 1 ) e. ZZ /\ k e. ZZ ) -> ( k e. ( ZZ>= ` ( N + 1 ) ) <-> ( N + 1 ) <_ k ) ) |
| 23 |
19 21 22
|
syl2anc |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( k e. ( ZZ>= ` ( N + 1 ) ) <-> ( N + 1 ) <_ k ) ) |
| 24 |
|
simplr |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) |
| 25 |
24
|
eleq2d |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( ( A ` k ) e. ( A " ( ZZ>= ` ( N + 1 ) ) ) <-> ( A ` k ) e. { 0 } ) ) |
| 26 |
|
fvex |
|- ( A ` k ) e. _V |
| 27 |
26
|
elsn |
|- ( ( A ` k ) e. { 0 } <-> ( A ` k ) = 0 ) |
| 28 |
25 27
|
bitrdi |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( ( A ` k ) e. ( A " ( ZZ>= ` ( N + 1 ) ) ) <-> ( A ` k ) = 0 ) ) |
| 29 |
15 23 28
|
3imtr3d |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( ( N + 1 ) <_ k -> ( A ` k ) = 0 ) ) |
| 30 |
29
|
necon3ad |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( ( A ` k ) =/= 0 -> -. ( N + 1 ) <_ k ) ) |
| 31 |
1 30
|
mpd |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> -. ( N + 1 ) <_ k ) |
| 32 |
|
nn0re |
|- ( k e. NN0 -> k e. RR ) |
| 33 |
32
|
ad2antrl |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> k e. RR ) |
| 34 |
18
|
zred |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( N + 1 ) e. RR ) |
| 35 |
34
|
ad2antrr |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( N + 1 ) e. RR ) |
| 36 |
33 35
|
ltnled |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( k < ( N + 1 ) <-> -. ( N + 1 ) <_ k ) ) |
| 37 |
31 36
|
mpbird |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> k < ( N + 1 ) ) |
| 38 |
17
|
ad2antrr |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> N e. ZZ ) |
| 39 |
|
zleltp1 |
|- ( ( k e. ZZ /\ N e. ZZ ) -> ( k <_ N <-> k < ( N + 1 ) ) ) |
| 40 |
21 38 39
|
syl2anc |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( k <_ N <-> k < ( N + 1 ) ) ) |
| 41 |
37 40
|
mpbird |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> k <_ N ) |
| 42 |
41
|
expr |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ k e. NN0 ) -> ( ( A ` k ) =/= 0 -> k <_ N ) ) |
| 43 |
42
|
ralrimiva |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) -> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) |
| 44 |
|
simpr |
|- ( ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> n e. ( ZZ>= ` ( N + 1 ) ) ) |
| 45 |
|
eluznn0 |
|- ( ( ( N + 1 ) e. NN0 /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> n e. NN0 ) |
| 46 |
5 44 45
|
syl2an |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> n e. NN0 ) |
| 47 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 48 |
47
|
adantr |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> N e. RR ) |
| 49 |
48
|
adantr |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> N e. RR ) |
| 50 |
34
|
adantr |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> ( N + 1 ) e. RR ) |
| 51 |
46
|
nn0red |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> n e. RR ) |
| 52 |
49
|
ltp1d |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> N < ( N + 1 ) ) |
| 53 |
|
eluzle |
|- ( n e. ( ZZ>= ` ( N + 1 ) ) -> ( N + 1 ) <_ n ) |
| 54 |
53
|
ad2antll |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> ( N + 1 ) <_ n ) |
| 55 |
49 50 51 52 54
|
ltletrd |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> N < n ) |
| 56 |
49 51
|
ltnled |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> ( N < n <-> -. n <_ N ) ) |
| 57 |
55 56
|
mpbid |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> -. n <_ N ) |
| 58 |
|
fveq2 |
|- ( k = n -> ( A ` k ) = ( A ` n ) ) |
| 59 |
58
|
neeq1d |
|- ( k = n -> ( ( A ` k ) =/= 0 <-> ( A ` n ) =/= 0 ) ) |
| 60 |
|
breq1 |
|- ( k = n -> ( k <_ N <-> n <_ N ) ) |
| 61 |
59 60
|
imbi12d |
|- ( k = n -> ( ( ( A ` k ) =/= 0 -> k <_ N ) <-> ( ( A ` n ) =/= 0 -> n <_ N ) ) ) |
| 62 |
|
simprl |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) |
| 63 |
61 62 46
|
rspcdva |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> ( ( A ` n ) =/= 0 -> n <_ N ) ) |
| 64 |
63
|
necon1bd |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> ( -. n <_ N -> ( A ` n ) = 0 ) ) |
| 65 |
57 64
|
mpd |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> ( A ` n ) = 0 ) |
| 66 |
|
ffn |
|- ( A : NN0 --> CC -> A Fn NN0 ) |
| 67 |
66
|
ad2antlr |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> A Fn NN0 ) |
| 68 |
|
fniniseg |
|- ( A Fn NN0 -> ( n e. ( `' A " { 0 } ) <-> ( n e. NN0 /\ ( A ` n ) = 0 ) ) ) |
| 69 |
67 68
|
syl |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> ( n e. ( `' A " { 0 } ) <-> ( n e. NN0 /\ ( A ` n ) = 0 ) ) ) |
| 70 |
46 65 69
|
mpbir2and |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> n e. ( `' A " { 0 } ) ) |
| 71 |
70
|
expr |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( n e. ( ZZ>= ` ( N + 1 ) ) -> n e. ( `' A " { 0 } ) ) ) |
| 72 |
71
|
ssrdv |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( ZZ>= ` ( N + 1 ) ) C_ ( `' A " { 0 } ) ) |
| 73 |
|
funimass3 |
|- ( ( Fun A /\ ( ZZ>= ` ( N + 1 ) ) C_ dom A ) -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) C_ { 0 } <-> ( ZZ>= ` ( N + 1 ) ) C_ ( `' A " { 0 } ) ) ) |
| 74 |
3 12 73
|
syl2anc |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) C_ { 0 } <-> ( ZZ>= ` ( N + 1 ) ) C_ ( `' A " { 0 } ) ) ) |
| 75 |
74
|
adantr |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) C_ { 0 } <-> ( ZZ>= ` ( N + 1 ) ) C_ ( `' A " { 0 } ) ) ) |
| 76 |
72 75
|
mpbird |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( A " ( ZZ>= ` ( N + 1 ) ) ) C_ { 0 } ) |
| 77 |
48
|
ltp1d |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> N < ( N + 1 ) ) |
| 78 |
48 34
|
ltnled |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( N < ( N + 1 ) <-> -. ( N + 1 ) <_ N ) ) |
| 79 |
77 78
|
mpbid |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> -. ( N + 1 ) <_ N ) |
| 80 |
79
|
adantr |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> -. ( N + 1 ) <_ N ) |
| 81 |
|
fveq2 |
|- ( k = ( N + 1 ) -> ( A ` k ) = ( A ` ( N + 1 ) ) ) |
| 82 |
81
|
neeq1d |
|- ( k = ( N + 1 ) -> ( ( A ` k ) =/= 0 <-> ( A ` ( N + 1 ) ) =/= 0 ) ) |
| 83 |
|
breq1 |
|- ( k = ( N + 1 ) -> ( k <_ N <-> ( N + 1 ) <_ N ) ) |
| 84 |
82 83
|
imbi12d |
|- ( k = ( N + 1 ) -> ( ( ( A ` k ) =/= 0 -> k <_ N ) <-> ( ( A ` ( N + 1 ) ) =/= 0 -> ( N + 1 ) <_ N ) ) ) |
| 85 |
84
|
rspcva |
|- ( ( ( N + 1 ) e. NN0 /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( ( A ` ( N + 1 ) ) =/= 0 -> ( N + 1 ) <_ N ) ) |
| 86 |
5 85
|
sylan |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( ( A ` ( N + 1 ) ) =/= 0 -> ( N + 1 ) <_ N ) ) |
| 87 |
86
|
necon1bd |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( -. ( N + 1 ) <_ N -> ( A ` ( N + 1 ) ) = 0 ) ) |
| 88 |
80 87
|
mpd |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( A ` ( N + 1 ) ) = 0 ) |
| 89 |
|
uzid |
|- ( ( N + 1 ) e. ZZ -> ( N + 1 ) e. ( ZZ>= ` ( N + 1 ) ) ) |
| 90 |
18 89
|
syl |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( N + 1 ) e. ( ZZ>= ` ( N + 1 ) ) ) |
| 91 |
|
funfvima2 |
|- ( ( Fun A /\ ( ZZ>= ` ( N + 1 ) ) C_ dom A ) -> ( ( N + 1 ) e. ( ZZ>= ` ( N + 1 ) ) -> ( A ` ( N + 1 ) ) e. ( A " ( ZZ>= ` ( N + 1 ) ) ) ) ) |
| 92 |
3 12 91
|
syl2anc |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( ( N + 1 ) e. ( ZZ>= ` ( N + 1 ) ) -> ( A ` ( N + 1 ) ) e. ( A " ( ZZ>= ` ( N + 1 ) ) ) ) ) |
| 93 |
90 92
|
mpd |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( A ` ( N + 1 ) ) e. ( A " ( ZZ>= ` ( N + 1 ) ) ) ) |
| 94 |
93
|
adantr |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( A ` ( N + 1 ) ) e. ( A " ( ZZ>= ` ( N + 1 ) ) ) ) |
| 95 |
88 94
|
eqeltrrd |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> 0 e. ( A " ( ZZ>= ` ( N + 1 ) ) ) ) |
| 96 |
95
|
snssd |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> { 0 } C_ ( A " ( ZZ>= ` ( N + 1 ) ) ) ) |
| 97 |
76 96
|
eqssd |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) |
| 98 |
43 97
|
impbida |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) ) |