| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plyeq0.1 |
|- ( ph -> S C_ CC ) |
| 2 |
|
plyeq0.2 |
|- ( ph -> N e. NN0 ) |
| 3 |
|
plyeq0.3 |
|- ( ph -> A e. ( ( S u. { 0 } ) ^m NN0 ) ) |
| 4 |
|
plyeq0.4 |
|- ( ph -> ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) |
| 5 |
|
plyeq0.5 |
|- ( ph -> 0p = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) |
| 6 |
|
plyeq0.6 |
|- M = sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) |
| 7 |
|
plyeq0.7 |
|- ( ph -> ( `' A " ( S \ { 0 } ) ) =/= (/) ) |
| 8 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 9 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 10 |
|
fzfid |
|- ( ph -> ( 0 ... N ) e. Fin ) |
| 11 |
|
1zzd |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> 1 e. ZZ ) |
| 12 |
|
0cn |
|- 0 e. CC |
| 13 |
12
|
a1i |
|- ( ph -> 0 e. CC ) |
| 14 |
13
|
snssd |
|- ( ph -> { 0 } C_ CC ) |
| 15 |
1 14
|
unssd |
|- ( ph -> ( S u. { 0 } ) C_ CC ) |
| 16 |
|
cnex |
|- CC e. _V |
| 17 |
|
ssexg |
|- ( ( ( S u. { 0 } ) C_ CC /\ CC e. _V ) -> ( S u. { 0 } ) e. _V ) |
| 18 |
15 16 17
|
sylancl |
|- ( ph -> ( S u. { 0 } ) e. _V ) |
| 19 |
|
nn0ex |
|- NN0 e. _V |
| 20 |
|
elmapg |
|- ( ( ( S u. { 0 } ) e. _V /\ NN0 e. _V ) -> ( A e. ( ( S u. { 0 } ) ^m NN0 ) <-> A : NN0 --> ( S u. { 0 } ) ) ) |
| 21 |
18 19 20
|
sylancl |
|- ( ph -> ( A e. ( ( S u. { 0 } ) ^m NN0 ) <-> A : NN0 --> ( S u. { 0 } ) ) ) |
| 22 |
3 21
|
mpbid |
|- ( ph -> A : NN0 --> ( S u. { 0 } ) ) |
| 23 |
22 15
|
fssd |
|- ( ph -> A : NN0 --> CC ) |
| 24 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
| 25 |
|
ffvelcdm |
|- ( ( A : NN0 --> CC /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
| 26 |
23 24 25
|
syl2an |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( A ` k ) e. CC ) |
| 27 |
26
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( A ` k ) e. CC ) |
| 28 |
27
|
abscld |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( abs ` ( A ` k ) ) e. RR ) |
| 29 |
28
|
recnd |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( abs ` ( A ` k ) ) e. CC ) |
| 30 |
|
divcnv |
|- ( ( abs ` ( A ` k ) ) e. CC -> ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ~~> 0 ) |
| 31 |
29 30
|
syl |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ~~> 0 ) |
| 32 |
|
nnex |
|- NN e. _V |
| 33 |
32
|
mptex |
|- ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) e. _V |
| 34 |
33
|
a1i |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) e. _V ) |
| 35 |
|
oveq2 |
|- ( n = m -> ( ( abs ` ( A ` k ) ) / n ) = ( ( abs ` ( A ` k ) ) / m ) ) |
| 36 |
|
eqid |
|- ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) = ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) |
| 37 |
|
ovex |
|- ( ( abs ` ( A ` k ) ) / m ) e. _V |
| 38 |
35 36 37
|
fvmpt |
|- ( m e. NN -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ` m ) = ( ( abs ` ( A ` k ) ) / m ) ) |
| 39 |
38
|
adantl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ` m ) = ( ( abs ` ( A ` k ) ) / m ) ) |
| 40 |
|
nndivre |
|- ( ( ( abs ` ( A ` k ) ) e. RR /\ m e. NN ) -> ( ( abs ` ( A ` k ) ) / m ) e. RR ) |
| 41 |
28 40
|
sylan |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( abs ` ( A ` k ) ) / m ) e. RR ) |
| 42 |
39 41
|
eqeltrd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ` m ) e. RR ) |
| 43 |
|
oveq1 |
|- ( n = m -> ( n ^ ( k - M ) ) = ( m ^ ( k - M ) ) ) |
| 44 |
43
|
oveq2d |
|- ( n = m -> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) = ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) ) |
| 45 |
|
eqid |
|- ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) = ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) |
| 46 |
|
ovex |
|- ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) e. _V |
| 47 |
44 45 46
|
fvmpt |
|- ( m e. NN -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) ) |
| 48 |
47
|
adantl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) ) |
| 49 |
26
|
ad2antrr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( A ` k ) e. CC ) |
| 50 |
49
|
abscld |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( abs ` ( A ` k ) ) e. RR ) |
| 51 |
|
nnrp |
|- ( m e. NN -> m e. RR+ ) |
| 52 |
51
|
adantl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> m e. RR+ ) |
| 53 |
|
elfzelz |
|- ( k e. ( 0 ... N ) -> k e. ZZ ) |
| 54 |
|
cnvimass |
|- ( `' A " ( S \ { 0 } ) ) C_ dom A |
| 55 |
54 22
|
fssdm |
|- ( ph -> ( `' A " ( S \ { 0 } ) ) C_ NN0 ) |
| 56 |
|
nn0ssz |
|- NN0 C_ ZZ |
| 57 |
55 56
|
sstrdi |
|- ( ph -> ( `' A " ( S \ { 0 } ) ) C_ ZZ ) |
| 58 |
2
|
nn0red |
|- ( ph -> N e. RR ) |
| 59 |
22
|
ffnd |
|- ( ph -> A Fn NN0 ) |
| 60 |
|
elpreima |
|- ( A Fn NN0 -> ( z e. ( `' A " ( S \ { 0 } ) ) <-> ( z e. NN0 /\ ( A ` z ) e. ( S \ { 0 } ) ) ) ) |
| 61 |
59 60
|
syl |
|- ( ph -> ( z e. ( `' A " ( S \ { 0 } ) ) <-> ( z e. NN0 /\ ( A ` z ) e. ( S \ { 0 } ) ) ) ) |
| 62 |
61
|
simplbda |
|- ( ( ph /\ z e. ( `' A " ( S \ { 0 } ) ) ) -> ( A ` z ) e. ( S \ { 0 } ) ) |
| 63 |
|
eldifsni |
|- ( ( A ` z ) e. ( S \ { 0 } ) -> ( A ` z ) =/= 0 ) |
| 64 |
62 63
|
syl |
|- ( ( ph /\ z e. ( `' A " ( S \ { 0 } ) ) ) -> ( A ` z ) =/= 0 ) |
| 65 |
|
fveq2 |
|- ( k = z -> ( A ` k ) = ( A ` z ) ) |
| 66 |
65
|
neeq1d |
|- ( k = z -> ( ( A ` k ) =/= 0 <-> ( A ` z ) =/= 0 ) ) |
| 67 |
|
breq1 |
|- ( k = z -> ( k <_ N <-> z <_ N ) ) |
| 68 |
66 67
|
imbi12d |
|- ( k = z -> ( ( ( A ` k ) =/= 0 -> k <_ N ) <-> ( ( A ` z ) =/= 0 -> z <_ N ) ) ) |
| 69 |
|
plyco0 |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) ) |
| 70 |
2 23 69
|
syl2anc |
|- ( ph -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) ) |
| 71 |
4 70
|
mpbid |
|- ( ph -> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) |
| 72 |
71
|
adantr |
|- ( ( ph /\ z e. ( `' A " ( S \ { 0 } ) ) ) -> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) |
| 73 |
55
|
sselda |
|- ( ( ph /\ z e. ( `' A " ( S \ { 0 } ) ) ) -> z e. NN0 ) |
| 74 |
68 72 73
|
rspcdva |
|- ( ( ph /\ z e. ( `' A " ( S \ { 0 } ) ) ) -> ( ( A ` z ) =/= 0 -> z <_ N ) ) |
| 75 |
64 74
|
mpd |
|- ( ( ph /\ z e. ( `' A " ( S \ { 0 } ) ) ) -> z <_ N ) |
| 76 |
75
|
ralrimiva |
|- ( ph -> A. z e. ( `' A " ( S \ { 0 } ) ) z <_ N ) |
| 77 |
|
brralrspcev |
|- ( ( N e. RR /\ A. z e. ( `' A " ( S \ { 0 } ) ) z <_ N ) -> E. x e. RR A. z e. ( `' A " ( S \ { 0 } ) ) z <_ x ) |
| 78 |
58 76 77
|
syl2anc |
|- ( ph -> E. x e. RR A. z e. ( `' A " ( S \ { 0 } ) ) z <_ x ) |
| 79 |
|
suprzcl |
|- ( ( ( `' A " ( S \ { 0 } ) ) C_ ZZ /\ ( `' A " ( S \ { 0 } ) ) =/= (/) /\ E. x e. RR A. z e. ( `' A " ( S \ { 0 } ) ) z <_ x ) -> sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) e. ( `' A " ( S \ { 0 } ) ) ) |
| 80 |
57 7 78 79
|
syl3anc |
|- ( ph -> sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) e. ( `' A " ( S \ { 0 } ) ) ) |
| 81 |
6 80
|
eqeltrid |
|- ( ph -> M e. ( `' A " ( S \ { 0 } ) ) ) |
| 82 |
55 81
|
sseldd |
|- ( ph -> M e. NN0 ) |
| 83 |
82
|
nn0zd |
|- ( ph -> M e. ZZ ) |
| 84 |
|
zsubcl |
|- ( ( k e. ZZ /\ M e. ZZ ) -> ( k - M ) e. ZZ ) |
| 85 |
53 83 84
|
syl2anr |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( k - M ) e. ZZ ) |
| 86 |
85
|
ad2antrr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( k - M ) e. ZZ ) |
| 87 |
52 86
|
rpexpcld |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( m ^ ( k - M ) ) e. RR+ ) |
| 88 |
87
|
rpred |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( m ^ ( k - M ) ) e. RR ) |
| 89 |
50 88
|
remulcld |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) e. RR ) |
| 90 |
48 89
|
eqeltrd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ` m ) e. RR ) |
| 91 |
|
nnrecre |
|- ( m e. NN -> ( 1 / m ) e. RR ) |
| 92 |
91
|
adantl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( 1 / m ) e. RR ) |
| 93 |
27
|
absge0d |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> 0 <_ ( abs ` ( A ` k ) ) ) |
| 94 |
93
|
adantr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 0 <_ ( abs ` ( A ` k ) ) ) |
| 95 |
|
nnre |
|- ( m e. NN -> m e. RR ) |
| 96 |
95
|
adantl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> m e. RR ) |
| 97 |
|
nnge1 |
|- ( m e. NN -> 1 <_ m ) |
| 98 |
97
|
adantl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 1 <_ m ) |
| 99 |
|
1red |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 1 e. RR ) |
| 100 |
86
|
zred |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( k - M ) e. RR ) |
| 101 |
|
simplr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> k < M ) |
| 102 |
53
|
adantl |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> k e. ZZ ) |
| 103 |
102
|
ad2antrr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> k e. ZZ ) |
| 104 |
83
|
ad3antrrr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> M e. ZZ ) |
| 105 |
|
zltp1le |
|- ( ( k e. ZZ /\ M e. ZZ ) -> ( k < M <-> ( k + 1 ) <_ M ) ) |
| 106 |
103 104 105
|
syl2anc |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( k < M <-> ( k + 1 ) <_ M ) ) |
| 107 |
101 106
|
mpbid |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( k + 1 ) <_ M ) |
| 108 |
24
|
adantl |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> k e. NN0 ) |
| 109 |
108
|
nn0red |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> k e. RR ) |
| 110 |
109
|
ad2antrr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> k e. RR ) |
| 111 |
82
|
adantr |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> M e. NN0 ) |
| 112 |
111
|
nn0red |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> M e. RR ) |
| 113 |
112
|
ad2antrr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> M e. RR ) |
| 114 |
110 99 113
|
leaddsub2d |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( k + 1 ) <_ M <-> 1 <_ ( M - k ) ) ) |
| 115 |
107 114
|
mpbid |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 1 <_ ( M - k ) ) |
| 116 |
109
|
recnd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> k e. CC ) |
| 117 |
116
|
ad2antrr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> k e. CC ) |
| 118 |
112
|
recnd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> M e. CC ) |
| 119 |
118
|
ad2antrr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> M e. CC ) |
| 120 |
117 119
|
negsubdi2d |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> -u ( k - M ) = ( M - k ) ) |
| 121 |
115 120
|
breqtrrd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 1 <_ -u ( k - M ) ) |
| 122 |
99 100 121
|
lenegcon2d |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( k - M ) <_ -u 1 ) |
| 123 |
|
neg1z |
|- -u 1 e. ZZ |
| 124 |
|
eluz |
|- ( ( ( k - M ) e. ZZ /\ -u 1 e. ZZ ) -> ( -u 1 e. ( ZZ>= ` ( k - M ) ) <-> ( k - M ) <_ -u 1 ) ) |
| 125 |
86 123 124
|
sylancl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( -u 1 e. ( ZZ>= ` ( k - M ) ) <-> ( k - M ) <_ -u 1 ) ) |
| 126 |
122 125
|
mpbird |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> -u 1 e. ( ZZ>= ` ( k - M ) ) ) |
| 127 |
96 98 126
|
leexp2ad |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( m ^ ( k - M ) ) <_ ( m ^ -u 1 ) ) |
| 128 |
|
nncn |
|- ( m e. NN -> m e. CC ) |
| 129 |
128
|
adantl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> m e. CC ) |
| 130 |
|
expn1 |
|- ( m e. CC -> ( m ^ -u 1 ) = ( 1 / m ) ) |
| 131 |
129 130
|
syl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( m ^ -u 1 ) = ( 1 / m ) ) |
| 132 |
127 131
|
breqtrd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( m ^ ( k - M ) ) <_ ( 1 / m ) ) |
| 133 |
88 92 50 94 132
|
lemul2ad |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) <_ ( ( abs ` ( A ` k ) ) x. ( 1 / m ) ) ) |
| 134 |
29
|
adantr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( abs ` ( A ` k ) ) e. CC ) |
| 135 |
|
nnne0 |
|- ( m e. NN -> m =/= 0 ) |
| 136 |
135
|
adantl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> m =/= 0 ) |
| 137 |
134 129 136
|
divrecd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( abs ` ( A ` k ) ) / m ) = ( ( abs ` ( A ` k ) ) x. ( 1 / m ) ) ) |
| 138 |
39 137
|
eqtrd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ` m ) = ( ( abs ` ( A ` k ) ) x. ( 1 / m ) ) ) |
| 139 |
133 48 138
|
3brtr4d |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ` m ) <_ ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) / n ) ) ` m ) ) |
| 140 |
87
|
rpge0d |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 0 <_ ( m ^ ( k - M ) ) ) |
| 141 |
50 88 94 140
|
mulge0d |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 0 <_ ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) ) |
| 142 |
141 48
|
breqtrrd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> 0 <_ ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ` m ) ) |
| 143 |
8 11 31 34 42 90 139 142
|
climsqz2 |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ~~> 0 ) |
| 144 |
32
|
mptex |
|- ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) e. _V |
| 145 |
144
|
a1i |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) e. _V ) |
| 146 |
43
|
oveq2d |
|- ( n = m -> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) = ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) |
| 147 |
|
eqid |
|- ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) = ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) |
| 148 |
|
ovex |
|- ( ( A ` k ) x. ( m ^ ( k - M ) ) ) e. _V |
| 149 |
146 147 148
|
fvmpt |
|- ( m e. NN -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) |
| 150 |
149
|
ad2antlr |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) |
| 151 |
23
|
adantr |
|- ( ( ph /\ m e. NN ) -> A : NN0 --> CC ) |
| 152 |
151 24 25
|
syl2an |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( A ` k ) e. CC ) |
| 153 |
128
|
ad2antlr |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> m e. CC ) |
| 154 |
135
|
ad2antlr |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> m =/= 0 ) |
| 155 |
83
|
adantr |
|- ( ( ph /\ m e. NN ) -> M e. ZZ ) |
| 156 |
53 155 84
|
syl2anr |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( k - M ) e. ZZ ) |
| 157 |
153 154 156
|
expclzd |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( m ^ ( k - M ) ) e. CC ) |
| 158 |
152 157
|
mulcld |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( A ` k ) x. ( m ^ ( k - M ) ) ) e. CC ) |
| 159 |
150 158
|
eqeltrd |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) e. CC ) |
| 160 |
159
|
an32s |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) e. CC ) |
| 161 |
160
|
adantlr |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) e. CC ) |
| 162 |
88
|
recnd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( m ^ ( k - M ) ) e. CC ) |
| 163 |
49 162
|
absmuld |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( abs ` ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) = ( ( abs ` ( A ` k ) ) x. ( abs ` ( m ^ ( k - M ) ) ) ) ) |
| 164 |
88 140
|
absidd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( abs ` ( m ^ ( k - M ) ) ) = ( m ^ ( k - M ) ) ) |
| 165 |
164
|
oveq2d |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( abs ` ( A ` k ) ) x. ( abs ` ( m ^ ( k - M ) ) ) ) = ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) ) |
| 166 |
163 165
|
eqtrd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( abs ` ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) = ( ( abs ` ( A ` k ) ) x. ( m ^ ( k - M ) ) ) ) |
| 167 |
149
|
adantl |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) |
| 168 |
167
|
fveq2d |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( abs ` ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) ) = ( abs ` ( ( A ` k ) x. ( m ^ ( k - M ) ) ) ) ) |
| 169 |
166 168 48
|
3eqtr4rd |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( abs ` ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) ) ) |
| 170 |
8 11 145 34 161 169
|
climabs0 |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ~~> 0 <-> ( n e. NN |-> ( ( abs ` ( A ` k ) ) x. ( n ^ ( k - M ) ) ) ) ~~> 0 ) ) |
| 171 |
143 170
|
mpbird |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ~~> 0 ) |
| 172 |
109
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> k e. RR ) |
| 173 |
|
simpr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> k < M ) |
| 174 |
172 173
|
ltned |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> k =/= M ) |
| 175 |
|
velsn |
|- ( k e. { M } <-> k = M ) |
| 176 |
175
|
necon3bbii |
|- ( -. k e. { M } <-> k =/= M ) |
| 177 |
174 176
|
sylibr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> -. k e. { M } ) |
| 178 |
177
|
iffalsed |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> if ( k e. { M } , ( A ` k ) , 0 ) = 0 ) |
| 179 |
171 178
|
breqtrrd |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ k < M ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ~~> if ( k e. { M } , ( A ` k ) , 0 ) ) |
| 180 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
| 181 |
180
|
ad2antlr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> n e. CC ) |
| 182 |
|
nnne0 |
|- ( n e. NN -> n =/= 0 ) |
| 183 |
182
|
ad2antlr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> n =/= 0 ) |
| 184 |
85
|
ad3antrrr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> ( k - M ) e. ZZ ) |
| 185 |
181 183 184
|
expclzd |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> ( n ^ ( k - M ) ) e. CC ) |
| 186 |
185
|
mul02d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> ( 0 x. ( n ^ ( k - M ) ) ) = 0 ) |
| 187 |
|
simpr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> ( A ` k ) = 0 ) |
| 188 |
187
|
oveq1d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) = ( 0 x. ( n ^ ( k - M ) ) ) ) |
| 189 |
187
|
ifeq1d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> if ( k e. { M } , ( A ` k ) , 0 ) = if ( k e. { M } , 0 , 0 ) ) |
| 190 |
|
ifid |
|- if ( k e. { M } , 0 , 0 ) = 0 |
| 191 |
189 190
|
eqtrdi |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> if ( k e. { M } , ( A ` k ) , 0 ) = 0 ) |
| 192 |
186 188 191
|
3eqtr4d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) = 0 ) -> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) = if ( k e. { M } , ( A ` k ) , 0 ) ) |
| 193 |
26
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) -> ( A ` k ) e. CC ) |
| 194 |
193
|
ad2antrr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( A ` k ) e. CC ) |
| 195 |
194
|
mulridd |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( ( A ` k ) x. 1 ) = ( A ` k ) ) |
| 196 |
|
nn0ssre |
|- NN0 C_ RR |
| 197 |
55 196
|
sstrdi |
|- ( ph -> ( `' A " ( S \ { 0 } ) ) C_ RR ) |
| 198 |
197
|
ad2antrr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> ( `' A " ( S \ { 0 } ) ) C_ RR ) |
| 199 |
7
|
ad2antrr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> ( `' A " ( S \ { 0 } ) ) =/= (/) ) |
| 200 |
78
|
ad2antrr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> E. x e. RR A. z e. ( `' A " ( S \ { 0 } ) ) z <_ x ) |
| 201 |
24
|
ad2antlr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> k e. NN0 ) |
| 202 |
|
ffvelcdm |
|- ( ( A : NN0 --> ( S u. { 0 } ) /\ k e. NN0 ) -> ( A ` k ) e. ( S u. { 0 } ) ) |
| 203 |
22 24 202
|
syl2an |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( A ` k ) e. ( S u. { 0 } ) ) |
| 204 |
203
|
anim1i |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> ( ( A ` k ) e. ( S u. { 0 } ) /\ ( A ` k ) =/= 0 ) ) |
| 205 |
|
eldifsn |
|- ( ( A ` k ) e. ( ( S u. { 0 } ) \ { 0 } ) <-> ( ( A ` k ) e. ( S u. { 0 } ) /\ ( A ` k ) =/= 0 ) ) |
| 206 |
204 205
|
sylibr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> ( A ` k ) e. ( ( S u. { 0 } ) \ { 0 } ) ) |
| 207 |
|
difun2 |
|- ( ( S u. { 0 } ) \ { 0 } ) = ( S \ { 0 } ) |
| 208 |
206 207
|
eleqtrdi |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> ( A ` k ) e. ( S \ { 0 } ) ) |
| 209 |
|
elpreima |
|- ( A Fn NN0 -> ( k e. ( `' A " ( S \ { 0 } ) ) <-> ( k e. NN0 /\ ( A ` k ) e. ( S \ { 0 } ) ) ) ) |
| 210 |
59 209
|
syl |
|- ( ph -> ( k e. ( `' A " ( S \ { 0 } ) ) <-> ( k e. NN0 /\ ( A ` k ) e. ( S \ { 0 } ) ) ) ) |
| 211 |
210
|
ad2antrr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> ( k e. ( `' A " ( S \ { 0 } ) ) <-> ( k e. NN0 /\ ( A ` k ) e. ( S \ { 0 } ) ) ) ) |
| 212 |
201 208 211
|
mpbir2and |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> k e. ( `' A " ( S \ { 0 } ) ) ) |
| 213 |
198 199 200 212
|
suprubd |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> k <_ sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) ) |
| 214 |
213 6
|
breqtrrdi |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ ( A ` k ) =/= 0 ) -> k <_ M ) |
| 215 |
214
|
ad4ant14 |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> k <_ M ) |
| 216 |
|
simpllr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> M <_ k ) |
| 217 |
109
|
ad3antrrr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> k e. RR ) |
| 218 |
112
|
ad3antrrr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> M e. RR ) |
| 219 |
217 218
|
letri3d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( k = M <-> ( k <_ M /\ M <_ k ) ) ) |
| 220 |
215 216 219
|
mpbir2and |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> k = M ) |
| 221 |
220
|
oveq1d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( k - M ) = ( M - M ) ) |
| 222 |
118
|
ad3antrrr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> M e. CC ) |
| 223 |
222
|
subidd |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( M - M ) = 0 ) |
| 224 |
221 223
|
eqtrd |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( k - M ) = 0 ) |
| 225 |
224
|
oveq2d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( n ^ ( k - M ) ) = ( n ^ 0 ) ) |
| 226 |
180
|
ad2antlr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> n e. CC ) |
| 227 |
226
|
exp0d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( n ^ 0 ) = 1 ) |
| 228 |
225 227
|
eqtrd |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( n ^ ( k - M ) ) = 1 ) |
| 229 |
228
|
oveq2d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) = ( ( A ` k ) x. 1 ) ) |
| 230 |
220 175
|
sylibr |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> k e. { M } ) |
| 231 |
230
|
iftrued |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> if ( k e. { M } , ( A ` k ) , 0 ) = ( A ` k ) ) |
| 232 |
195 229 231
|
3eqtr4d |
|- ( ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) /\ ( A ` k ) =/= 0 ) -> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) = if ( k e. { M } , ( A ` k ) , 0 ) ) |
| 233 |
192 232
|
pm2.61dane |
|- ( ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) /\ n e. NN ) -> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) = if ( k e. { M } , ( A ` k ) , 0 ) ) |
| 234 |
233
|
mpteq2dva |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) = ( n e. NN |-> if ( k e. { M } , ( A ` k ) , 0 ) ) ) |
| 235 |
|
fconstmpt |
|- ( NN X. { if ( k e. { M } , ( A ` k ) , 0 ) } ) = ( n e. NN |-> if ( k e. { M } , ( A ` k ) , 0 ) ) |
| 236 |
234 235
|
eqtr4di |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) = ( NN X. { if ( k e. { M } , ( A ` k ) , 0 ) } ) ) |
| 237 |
|
ifcl |
|- ( ( ( A ` k ) e. CC /\ 0 e. CC ) -> if ( k e. { M } , ( A ` k ) , 0 ) e. CC ) |
| 238 |
193 12 237
|
sylancl |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) -> if ( k e. { M } , ( A ` k ) , 0 ) e. CC ) |
| 239 |
|
1z |
|- 1 e. ZZ |
| 240 |
8
|
eqimss2i |
|- ( ZZ>= ` 1 ) C_ NN |
| 241 |
240 32
|
climconst2 |
|- ( ( if ( k e. { M } , ( A ` k ) , 0 ) e. CC /\ 1 e. ZZ ) -> ( NN X. { if ( k e. { M } , ( A ` k ) , 0 ) } ) ~~> if ( k e. { M } , ( A ` k ) , 0 ) ) |
| 242 |
238 239 241
|
sylancl |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) -> ( NN X. { if ( k e. { M } , ( A ` k ) , 0 ) } ) ~~> if ( k e. { M } , ( A ` k ) , 0 ) ) |
| 243 |
236 242
|
eqbrtrd |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ M <_ k ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ~~> if ( k e. { M } , ( A ` k ) , 0 ) ) |
| 244 |
179 243 109 112
|
ltlecasei |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ~~> if ( k e. { M } , ( A ` k ) , 0 ) ) |
| 245 |
|
snex |
|- { 0 } e. _V |
| 246 |
32 245
|
xpex |
|- ( NN X. { 0 } ) e. _V |
| 247 |
246
|
a1i |
|- ( ph -> ( NN X. { 0 } ) e. _V ) |
| 248 |
160
|
anasss |
|- ( ( ph /\ ( k e. ( 0 ... N ) /\ m e. NN ) ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) e. CC ) |
| 249 |
5
|
fveq1d |
|- ( ph -> ( 0p ` m ) = ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ` m ) ) |
| 250 |
249
|
adantr |
|- ( ( ph /\ m e. NN ) -> ( 0p ` m ) = ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ` m ) ) |
| 251 |
128
|
adantl |
|- ( ( ph /\ m e. NN ) -> m e. CC ) |
| 252 |
|
0pval |
|- ( m e. CC -> ( 0p ` m ) = 0 ) |
| 253 |
251 252
|
syl |
|- ( ( ph /\ m e. NN ) -> ( 0p ` m ) = 0 ) |
| 254 |
|
oveq1 |
|- ( z = m -> ( z ^ k ) = ( m ^ k ) ) |
| 255 |
254
|
oveq2d |
|- ( z = m -> ( ( A ` k ) x. ( z ^ k ) ) = ( ( A ` k ) x. ( m ^ k ) ) ) |
| 256 |
255
|
sumeq2sdv |
|- ( z = m -> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) ) |
| 257 |
|
eqid |
|- ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) |
| 258 |
|
sumex |
|- sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) e. _V |
| 259 |
256 257 258
|
fvmpt |
|- ( m e. CC -> ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ` m ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) ) |
| 260 |
251 259
|
syl |
|- ( ( ph /\ m e. NN ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ` m ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) ) |
| 261 |
250 253 260
|
3eqtr3d |
|- ( ( ph /\ m e. NN ) -> 0 = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) ) |
| 262 |
261
|
oveq1d |
|- ( ( ph /\ m e. NN ) -> ( 0 / ( m ^ M ) ) = ( sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) ) |
| 263 |
|
expcl |
|- ( ( m e. CC /\ M e. NN0 ) -> ( m ^ M ) e. CC ) |
| 264 |
128 82 263
|
syl2anr |
|- ( ( ph /\ m e. NN ) -> ( m ^ M ) e. CC ) |
| 265 |
135
|
adantl |
|- ( ( ph /\ m e. NN ) -> m =/= 0 ) |
| 266 |
251 265 155
|
expne0d |
|- ( ( ph /\ m e. NN ) -> ( m ^ M ) =/= 0 ) |
| 267 |
264 266
|
div0d |
|- ( ( ph /\ m e. NN ) -> ( 0 / ( m ^ M ) ) = 0 ) |
| 268 |
|
fzfid |
|- ( ( ph /\ m e. NN ) -> ( 0 ... N ) e. Fin ) |
| 269 |
|
expcl |
|- ( ( m e. CC /\ k e. NN0 ) -> ( m ^ k ) e. CC ) |
| 270 |
251 24 269
|
syl2an |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( m ^ k ) e. CC ) |
| 271 |
152 270
|
mulcld |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( A ` k ) x. ( m ^ k ) ) e. CC ) |
| 272 |
268 264 271 266
|
fsumdivc |
|- ( ( ph /\ m e. NN ) -> ( sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) = sum_ k e. ( 0 ... N ) ( ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) ) |
| 273 |
262 267 272
|
3eqtr3d |
|- ( ( ph /\ m e. NN ) -> 0 = sum_ k e. ( 0 ... N ) ( ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) ) |
| 274 |
|
fvconst2g |
|- ( ( 0 e. CC /\ m e. NN ) -> ( ( NN X. { 0 } ) ` m ) = 0 ) |
| 275 |
13 274
|
sylan |
|- ( ( ph /\ m e. NN ) -> ( ( NN X. { 0 } ) ` m ) = 0 ) |
| 276 |
155
|
adantr |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> M e. ZZ ) |
| 277 |
53
|
adantl |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> k e. ZZ ) |
| 278 |
153 154 276 277
|
expsubd |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( m ^ ( k - M ) ) = ( ( m ^ k ) / ( m ^ M ) ) ) |
| 279 |
278
|
oveq2d |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( A ` k ) x. ( m ^ ( k - M ) ) ) = ( ( A ` k ) x. ( ( m ^ k ) / ( m ^ M ) ) ) ) |
| 280 |
264
|
adantr |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( m ^ M ) e. CC ) |
| 281 |
266
|
adantr |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( m ^ M ) =/= 0 ) |
| 282 |
152 270 280 281
|
divassd |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) = ( ( A ` k ) x. ( ( m ^ k ) / ( m ^ M ) ) ) ) |
| 283 |
279 150 282
|
3eqtr4d |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... N ) ) -> ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) = ( ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) ) |
| 284 |
283
|
sumeq2dv |
|- ( ( ph /\ m e. NN ) -> sum_ k e. ( 0 ... N ) ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) = sum_ k e. ( 0 ... N ) ( ( ( A ` k ) x. ( m ^ k ) ) / ( m ^ M ) ) ) |
| 285 |
273 275 284
|
3eqtr4d |
|- ( ( ph /\ m e. NN ) -> ( ( NN X. { 0 } ) ` m ) = sum_ k e. ( 0 ... N ) ( ( n e. NN |-> ( ( A ` k ) x. ( n ^ ( k - M ) ) ) ) ` m ) ) |
| 286 |
8 9 10 244 247 248 285
|
climfsum |
|- ( ph -> ( NN X. { 0 } ) ~~> sum_ k e. ( 0 ... N ) if ( k e. { M } , ( A ` k ) , 0 ) ) |
| 287 |
|
suprleub |
|- ( ( ( ( `' A " ( S \ { 0 } ) ) C_ RR /\ ( `' A " ( S \ { 0 } ) ) =/= (/) /\ E. x e. RR A. z e. ( `' A " ( S \ { 0 } ) ) z <_ x ) /\ N e. RR ) -> ( sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) <_ N <-> A. z e. ( `' A " ( S \ { 0 } ) ) z <_ N ) ) |
| 288 |
197 7 78 58 287
|
syl31anc |
|- ( ph -> ( sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) <_ N <-> A. z e. ( `' A " ( S \ { 0 } ) ) z <_ N ) ) |
| 289 |
76 288
|
mpbird |
|- ( ph -> sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) <_ N ) |
| 290 |
6 289
|
eqbrtrid |
|- ( ph -> M <_ N ) |
| 291 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 292 |
82 291
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
| 293 |
2
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 294 |
|
elfz5 |
|- ( ( M e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( M e. ( 0 ... N ) <-> M <_ N ) ) |
| 295 |
292 293 294
|
syl2anc |
|- ( ph -> ( M e. ( 0 ... N ) <-> M <_ N ) ) |
| 296 |
290 295
|
mpbird |
|- ( ph -> M e. ( 0 ... N ) ) |
| 297 |
296
|
snssd |
|- ( ph -> { M } C_ ( 0 ... N ) ) |
| 298 |
23 82
|
ffvelcdmd |
|- ( ph -> ( A ` M ) e. CC ) |
| 299 |
|
elsni |
|- ( k e. { M } -> k = M ) |
| 300 |
299
|
fveq2d |
|- ( k e. { M } -> ( A ` k ) = ( A ` M ) ) |
| 301 |
300
|
eleq1d |
|- ( k e. { M } -> ( ( A ` k ) e. CC <-> ( A ` M ) e. CC ) ) |
| 302 |
298 301
|
syl5ibrcom |
|- ( ph -> ( k e. { M } -> ( A ` k ) e. CC ) ) |
| 303 |
302
|
ralrimiv |
|- ( ph -> A. k e. { M } ( A ` k ) e. CC ) |
| 304 |
10
|
olcd |
|- ( ph -> ( ( 0 ... N ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... N ) e. Fin ) ) |
| 305 |
|
sumss2 |
|- ( ( ( { M } C_ ( 0 ... N ) /\ A. k e. { M } ( A ` k ) e. CC ) /\ ( ( 0 ... N ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... N ) e. Fin ) ) -> sum_ k e. { M } ( A ` k ) = sum_ k e. ( 0 ... N ) if ( k e. { M } , ( A ` k ) , 0 ) ) |
| 306 |
297 303 304 305
|
syl21anc |
|- ( ph -> sum_ k e. { M } ( A ` k ) = sum_ k e. ( 0 ... N ) if ( k e. { M } , ( A ` k ) , 0 ) ) |
| 307 |
|
ltso |
|- < Or RR |
| 308 |
307
|
supex |
|- sup ( ( `' A " ( S \ { 0 } ) ) , RR , < ) e. _V |
| 309 |
6 308
|
eqeltri |
|- M e. _V |
| 310 |
|
fveq2 |
|- ( k = M -> ( A ` k ) = ( A ` M ) ) |
| 311 |
310
|
sumsn |
|- ( ( M e. _V /\ ( A ` M ) e. CC ) -> sum_ k e. { M } ( A ` k ) = ( A ` M ) ) |
| 312 |
309 298 311
|
sylancr |
|- ( ph -> sum_ k e. { M } ( A ` k ) = ( A ` M ) ) |
| 313 |
306 312
|
eqtr3d |
|- ( ph -> sum_ k e. ( 0 ... N ) if ( k e. { M } , ( A ` k ) , 0 ) = ( A ` M ) ) |
| 314 |
286 313
|
breqtrd |
|- ( ph -> ( NN X. { 0 } ) ~~> ( A ` M ) ) |
| 315 |
240 32
|
climconst2 |
|- ( ( 0 e. CC /\ 1 e. ZZ ) -> ( NN X. { 0 } ) ~~> 0 ) |
| 316 |
12 239 315
|
mp2an |
|- ( NN X. { 0 } ) ~~> 0 |
| 317 |
|
climuni |
|- ( ( ( NN X. { 0 } ) ~~> ( A ` M ) /\ ( NN X. { 0 } ) ~~> 0 ) -> ( A ` M ) = 0 ) |
| 318 |
314 316 317
|
sylancl |
|- ( ph -> ( A ` M ) = 0 ) |
| 319 |
|
fvex |
|- ( A ` M ) e. _V |
| 320 |
319
|
elsn |
|- ( ( A ` M ) e. { 0 } <-> ( A ` M ) = 0 ) |
| 321 |
318 320
|
sylibr |
|- ( ph -> ( A ` M ) e. { 0 } ) |
| 322 |
|
elpreima |
|- ( A Fn NN0 -> ( M e. ( `' A " ( S \ { 0 } ) ) <-> ( M e. NN0 /\ ( A ` M ) e. ( S \ { 0 } ) ) ) ) |
| 323 |
59 322
|
syl |
|- ( ph -> ( M e. ( `' A " ( S \ { 0 } ) ) <-> ( M e. NN0 /\ ( A ` M ) e. ( S \ { 0 } ) ) ) ) |
| 324 |
81 323
|
mpbid |
|- ( ph -> ( M e. NN0 /\ ( A ` M ) e. ( S \ { 0 } ) ) ) |
| 325 |
324
|
simprd |
|- ( ph -> ( A ` M ) e. ( S \ { 0 } ) ) |
| 326 |
325
|
eldifbd |
|- ( ph -> -. ( A ` M ) e. { 0 } ) |
| 327 |
321 326
|
pm2.65i |
|- -. ph |