Description: Ordering elimination by cases. (Contributed by NM, 1-Jul-2007) (Proof shortened by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ltlecasei.1 | |- ( ( ph /\ A < B ) -> ps ) |
|
ltlecasei.2 | |- ( ( ph /\ B <_ A ) -> ps ) |
||
ltlecasei.3 | |- ( ph -> A e. RR ) |
||
ltlecasei.4 | |- ( ph -> B e. RR ) |
||
Assertion | ltlecasei | |- ( ph -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltlecasei.1 | |- ( ( ph /\ A < B ) -> ps ) |
|
2 | ltlecasei.2 | |- ( ( ph /\ B <_ A ) -> ps ) |
|
3 | ltlecasei.3 | |- ( ph -> A e. RR ) |
|
4 | ltlecasei.4 | |- ( ph -> B e. RR ) |
|
5 | lelttric | |- ( ( B e. RR /\ A e. RR ) -> ( B <_ A \/ A < B ) ) |
|
6 | 4 3 5 | syl2anc | |- ( ph -> ( B <_ A \/ A < B ) ) |
7 | 2 1 6 | mpjaodan | |- ( ph -> ps ) |