Metamath Proof Explorer


Theorem ltlecasei

Description: Ordering elimination by cases. (Contributed by NM, 1-Jul-2007) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltlecasei.1
|- ( ( ph /\ A < B ) -> ps )
ltlecasei.2
|- ( ( ph /\ B <_ A ) -> ps )
ltlecasei.3
|- ( ph -> A e. RR )
ltlecasei.4
|- ( ph -> B e. RR )
Assertion ltlecasei
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 ltlecasei.1
 |-  ( ( ph /\ A < B ) -> ps )
2 ltlecasei.2
 |-  ( ( ph /\ B <_ A ) -> ps )
3 ltlecasei.3
 |-  ( ph -> A e. RR )
4 ltlecasei.4
 |-  ( ph -> B e. RR )
5 lelttric
 |-  ( ( B e. RR /\ A e. RR ) -> ( B <_ A \/ A < B ) )
6 4 3 5 syl2anc
 |-  ( ph -> ( B <_ A \/ A < B ) )
7 2 1 6 mpjaodan
 |-  ( ph -> ps )