Description: Natural deduction form of suprubd . (Contributed by Stanislas Polu, 9-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | suprubd.1 | |- ( ph -> A C_ RR ) |
|
suprubd.2 | |- ( ph -> A =/= (/) ) |
||
suprubd.3 | |- ( ph -> E. x e. RR A. y e. A y <_ x ) |
||
suprubd.4 | |- ( ph -> B e. A ) |
||
Assertion | suprubd | |- ( ph -> B <_ sup ( A , RR , < ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suprubd.1 | |- ( ph -> A C_ RR ) |
|
2 | suprubd.2 | |- ( ph -> A =/= (/) ) |
|
3 | suprubd.3 | |- ( ph -> E. x e. RR A. y e. A y <_ x ) |
|
4 | suprubd.4 | |- ( ph -> B e. A ) |
|
5 | suprub | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. A ) -> B <_ sup ( A , RR , < ) ) |
|
6 | 1 2 3 4 5 | syl31anc | |- ( ph -> B <_ sup ( A , RR , < ) ) |