Metamath Proof Explorer


Theorem suprubd

Description: Natural deduction form of suprubd . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses suprubd.1
|- ( ph -> A C_ RR )
suprubd.2
|- ( ph -> A =/= (/) )
suprubd.3
|- ( ph -> E. x e. RR A. y e. A y <_ x )
suprubd.4
|- ( ph -> B e. A )
Assertion suprubd
|- ( ph -> B <_ sup ( A , RR , < ) )

Proof

Step Hyp Ref Expression
1 suprubd.1
 |-  ( ph -> A C_ RR )
2 suprubd.2
 |-  ( ph -> A =/= (/) )
3 suprubd.3
 |-  ( ph -> E. x e. RR A. y e. A y <_ x )
4 suprubd.4
 |-  ( ph -> B e. A )
5 suprub
 |-  ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. A ) -> B <_ sup ( A , RR , < ) )
6 1 2 3 4 5 syl31anc
 |-  ( ph -> B <_ sup ( A , RR , < ) )