| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							1z | 
							 |-  1 e. ZZ  | 
						
						
							| 2 | 
							
								
							 | 
							nnuz | 
							 |-  NN = ( ZZ>= ` 1 )  | 
						
						
							| 3 | 
							
								
							 | 
							1zzd | 
							 |-  ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> 1 e. ZZ )  | 
						
						
							| 4 | 
							
								
							 | 
							climcl | 
							 |-  ( F ~~> A -> A e. CC )  | 
						
						
							| 5 | 
							
								4
							 | 
							3ad2ant1 | 
							 |-  ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> A e. CC )  | 
						
						
							| 6 | 
							
								
							 | 
							climcl | 
							 |-  ( F ~~> B -> B e. CC )  | 
						
						
							| 7 | 
							
								6
							 | 
							3ad2ant2 | 
							 |-  ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> B e. CC )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							subcld | 
							 |-  ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( A - B ) e. CC )  | 
						
						
							| 9 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> A =/= B )  | 
						
						
							| 10 | 
							
								5 7 9
							 | 
							subne0d | 
							 |-  ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( A - B ) =/= 0 )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							absrpcld | 
							 |-  ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( abs ` ( A - B ) ) e. RR+ )  | 
						
						
							| 12 | 
							
								11
							 | 
							rphalfcld | 
							 |-  ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( ( abs ` ( A - B ) ) / 2 ) e. RR+ )  | 
						
						
							| 13 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ( F ~~> A /\ F ~~> B /\ A =/= B ) /\ k e. NN ) -> ( F ` k ) = ( F ` k ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> F ~~> A )  | 
						
						
							| 15 | 
							
								2 3 12 13 14
							 | 
							climi | 
							 |-  ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> F ~~> B )  | 
						
						
							| 17 | 
							
								2 3 12 13 16
							 | 
							climi | 
							 |-  ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) )  | 
						
						
							| 18 | 
							
								2
							 | 
							rexanuz2 | 
							 |-  ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) <-> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) )  | 
						
						
							| 19 | 
							
								15 17 18
							 | 
							sylanbrc | 
							 |-  ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							nnz | 
							 |-  ( j e. NN -> j e. ZZ )  | 
						
						
							| 21 | 
							
								
							 | 
							uzid | 
							 |-  ( j e. ZZ -> j e. ( ZZ>= ` j ) )  | 
						
						
							| 22 | 
							
								
							 | 
							ne0i | 
							 |-  ( j e. ( ZZ>= ` j ) -> ( ZZ>= ` j ) =/= (/) )  | 
						
						
							| 23 | 
							
								
							 | 
							r19.2z | 
							 |-  ( ( ( ZZ>= ` j ) =/= (/) /\ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) -> E. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							ex | 
							 |-  ( ( ZZ>= ` j ) =/= (/) -> ( A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> E. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) )  | 
						
						
							| 25 | 
							
								20 21 22 24
							 | 
							4syl | 
							 |-  ( j e. NN -> ( A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> E. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( F ` k ) e. CC )  | 
						
						
							| 27 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> A e. CC )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							abssubd | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( abs ` ( ( F ` k ) - A ) ) = ( abs ` ( A - ( F ` k ) ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							breq1d | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) <-> ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> B e. CC )  | 
						
						
							| 31 | 
							
								
							 | 
							subcl | 
							 |-  ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantr | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( A - B ) e. CC )  | 
						
						
							| 33 | 
							
								32
							 | 
							abscld | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( abs ` ( A - B ) ) e. RR )  | 
						
						
							| 34 | 
							
								
							 | 
							abs3lem | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( A - B ) ) e. RR ) ) -> ( ( ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) -> ( abs ` ( A - B ) ) < ( abs ` ( A - B ) ) ) )  | 
						
						
							| 35 | 
							
								27 30 26 33 34
							 | 
							syl22anc | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) -> ( abs ` ( A - B ) ) < ( abs ` ( A - B ) ) ) )  | 
						
						
							| 36 | 
							
								33
							 | 
							ltnrd | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> -. ( abs ` ( A - B ) ) < ( abs ` ( A - B ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							pm2.21d | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( abs ` ( A - B ) ) < ( abs ` ( A - B ) ) -> -. 1 e. ZZ ) )  | 
						
						
							| 38 | 
							
								35 37
							 | 
							syld | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) -> -. 1 e. ZZ ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							expd | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> -. 1 e. ZZ ) ) )  | 
						
						
							| 40 | 
							
								29 39
							 | 
							sylbid | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> -. 1 e. ZZ ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							impr | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> -. 1 e. ZZ ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							adantld | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) -> -. 1 e. ZZ ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							expimpd | 
							 |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							rexlimdvw | 
							 |-  ( ( A e. CC /\ B e. CC ) -> ( E. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) )  | 
						
						
							| 45 | 
							
								25 44
							 | 
							sylan9r | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							rexlimdva | 
							 |-  ( ( A e. CC /\ B e. CC ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) )  | 
						
						
							| 47 | 
							
								5 7 46
							 | 
							syl2anc | 
							 |-  ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) )  | 
						
						
							| 48 | 
							
								19 47
							 | 
							mpd | 
							 |-  ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> -. 1 e. ZZ )  | 
						
						
							| 49 | 
							
								48
							 | 
							3expia | 
							 |-  ( ( F ~~> A /\ F ~~> B ) -> ( A =/= B -> -. 1 e. ZZ ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							necon4ad | 
							 |-  ( ( F ~~> A /\ F ~~> B ) -> ( 1 e. ZZ -> A = B ) )  | 
						
						
							| 51 | 
							
								1 50
							 | 
							mpi | 
							 |-  ( ( F ~~> A /\ F ~~> B ) -> A = B )  |