Step |
Hyp |
Ref |
Expression |
1 |
|
simplll |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> A e. CC ) |
2 |
|
simpllr |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> B e. CC ) |
3 |
1 2
|
subcld |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( A - B ) e. CC ) |
4 |
|
abscl |
|- ( ( A - B ) e. CC -> ( abs ` ( A - B ) ) e. RR ) |
5 |
3 4
|
syl |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( abs ` ( A - B ) ) e. RR ) |
6 |
|
simplrl |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> C e. CC ) |
7 |
1 6
|
subcld |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( A - C ) e. CC ) |
8 |
|
abscl |
|- ( ( A - C ) e. CC -> ( abs ` ( A - C ) ) e. RR ) |
9 |
7 8
|
syl |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( abs ` ( A - C ) ) e. RR ) |
10 |
6 2
|
subcld |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( C - B ) e. CC ) |
11 |
|
abscl |
|- ( ( C - B ) e. CC -> ( abs ` ( C - B ) ) e. RR ) |
12 |
10 11
|
syl |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( abs ` ( C - B ) ) e. RR ) |
13 |
9 12
|
readdcld |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) e. RR ) |
14 |
|
simplrr |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> D e. RR ) |
15 |
|
abs3dif |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( abs ` ( A - B ) ) <_ ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) ) |
16 |
1 2 6 15
|
syl3anc |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( abs ` ( A - B ) ) <_ ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) ) |
17 |
|
simprl |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( abs ` ( A - C ) ) < ( D / 2 ) ) |
18 |
|
simprr |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( abs ` ( C - B ) ) < ( D / 2 ) ) |
19 |
9 12 14 17 18
|
lt2halvesd |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) < D ) |
20 |
5 13 14 16 19
|
lelttrd |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( abs ` ( A - B ) ) < D ) |
21 |
20
|
ex |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) -> ( ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) -> ( abs ` ( A - B ) ) < D ) ) |