| Step | Hyp | Ref | Expression | 
						
							| 1 |  | absvalsq |  |-  ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) | 
						
							| 3 |  | abscl |  |-  ( A e. CC -> ( abs ` A ) e. RR ) | 
						
							| 4 | 3 | adantr |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR ) | 
						
							| 5 | 4 | recnd |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. CC ) | 
						
							| 6 | 5 | sqvald |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) ^ 2 ) = ( ( abs ` A ) x. ( abs ` A ) ) ) | 
						
							| 7 | 2 6 | eqtr3d |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( A x. ( * ` A ) ) = ( ( abs ` A ) x. ( abs ` A ) ) ) | 
						
							| 8 | 7 | oveq1d |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( A x. ( * ` A ) ) / ( abs ` A ) ) = ( ( ( abs ` A ) x. ( abs ` A ) ) / ( abs ` A ) ) ) | 
						
							| 9 |  | simpl |  |-  ( ( A e. CC /\ A =/= 0 ) -> A e. CC ) | 
						
							| 10 | 9 | cjcld |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( * ` A ) e. CC ) | 
						
							| 11 |  | abs00 |  |-  ( A e. CC -> ( ( abs ` A ) = 0 <-> A = 0 ) ) | 
						
							| 12 | 11 | necon3bid |  |-  ( A e. CC -> ( ( abs ` A ) =/= 0 <-> A =/= 0 ) ) | 
						
							| 13 | 12 | biimpar |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) =/= 0 ) | 
						
							| 14 | 9 10 5 13 | div23d |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( A x. ( * ` A ) ) / ( abs ` A ) ) = ( ( A / ( abs ` A ) ) x. ( * ` A ) ) ) | 
						
							| 15 | 5 5 13 | divcan3d |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( ( abs ` A ) x. ( abs ` A ) ) / ( abs ` A ) ) = ( abs ` A ) ) | 
						
							| 16 | 8 14 15 | 3eqtr3d |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( A / ( abs ` A ) ) x. ( * ` A ) ) = ( abs ` A ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( * ` ( ( A / ( abs ` A ) ) x. ( * ` A ) ) ) = ( * ` ( abs ` A ) ) ) | 
						
							| 18 | 9 5 13 | divcld |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( A / ( abs ` A ) ) e. CC ) | 
						
							| 19 | 18 10 | cjmuld |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( * ` ( ( A / ( abs ` A ) ) x. ( * ` A ) ) ) = ( ( * ` ( A / ( abs ` A ) ) ) x. ( * ` ( * ` A ) ) ) ) | 
						
							| 20 | 9 | cjcjd |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( * ` ( * ` A ) ) = A ) | 
						
							| 21 | 20 | oveq2d |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( * ` ( A / ( abs ` A ) ) ) x. ( * ` ( * ` A ) ) ) = ( ( * ` ( A / ( abs ` A ) ) ) x. A ) ) | 
						
							| 22 | 19 21 | eqtrd |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( * ` ( ( A / ( abs ` A ) ) x. ( * ` A ) ) ) = ( ( * ` ( A / ( abs ` A ) ) ) x. A ) ) | 
						
							| 23 | 4 | cjred |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( * ` ( abs ` A ) ) = ( abs ` A ) ) | 
						
							| 24 | 17 22 23 | 3eqtr3d |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( * ` ( A / ( abs ` A ) ) ) x. A ) = ( abs ` A ) ) | 
						
							| 25 | 24 16 | oveq12d |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( ( * ` ( A / ( abs ` A ) ) ) x. A ) + ( ( A / ( abs ` A ) ) x. ( * ` A ) ) ) = ( ( abs ` A ) + ( abs ` A ) ) ) | 
						
							| 26 | 5 | 2timesd |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( 2 x. ( abs ` A ) ) = ( ( abs ` A ) + ( abs ` A ) ) ) | 
						
							| 27 | 25 26 | eqtr4d |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( ( * ` ( A / ( abs ` A ) ) ) x. A ) + ( ( A / ( abs ` A ) ) x. ( * ` A ) ) ) = ( 2 x. ( abs ` A ) ) ) |