Step |
Hyp |
Ref |
Expression |
1 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
2 |
1
|
2timesi |
|- ( 2 x. ( 1 / 2 ) ) = ( ( 1 / 2 ) + ( 1 / 2 ) ) |
3 |
|
2cn |
|- 2 e. CC |
4 |
|
2ne0 |
|- 2 =/= 0 |
5 |
3 4
|
recidi |
|- ( 2 x. ( 1 / 2 ) ) = 1 |
6 |
2 5
|
eqtr3i |
|- ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 |
7 |
6
|
oveq2i |
|- ( ( A - ( 1 / 2 ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( A - ( 1 / 2 ) ) + 1 ) |
8 |
|
recn |
|- ( A e. RR -> A e. CC ) |
9 |
1
|
a1i |
|- ( A e. RR -> ( 1 / 2 ) e. CC ) |
10 |
8 9 9
|
nppcan3d |
|- ( A e. RR -> ( ( A - ( 1 / 2 ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( A + ( 1 / 2 ) ) ) |
11 |
7 10
|
eqtr3id |
|- ( A e. RR -> ( ( A - ( 1 / 2 ) ) + 1 ) = ( A + ( 1 / 2 ) ) ) |
12 |
|
halfre |
|- ( 1 / 2 ) e. RR |
13 |
|
readdcl |
|- ( ( A e. RR /\ ( 1 / 2 ) e. RR ) -> ( A + ( 1 / 2 ) ) e. RR ) |
14 |
12 13
|
mpan2 |
|- ( A e. RR -> ( A + ( 1 / 2 ) ) e. RR ) |
15 |
|
fllep1 |
|- ( ( A + ( 1 / 2 ) ) e. RR -> ( A + ( 1 / 2 ) ) <_ ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) ) |
16 |
14 15
|
syl |
|- ( A e. RR -> ( A + ( 1 / 2 ) ) <_ ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) ) |
17 |
11 16
|
eqbrtrd |
|- ( A e. RR -> ( ( A - ( 1 / 2 ) ) + 1 ) <_ ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) ) |
18 |
|
resubcl |
|- ( ( A e. RR /\ ( 1 / 2 ) e. RR ) -> ( A - ( 1 / 2 ) ) e. RR ) |
19 |
12 18
|
mpan2 |
|- ( A e. RR -> ( A - ( 1 / 2 ) ) e. RR ) |
20 |
|
reflcl |
|- ( ( A + ( 1 / 2 ) ) e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR ) |
21 |
14 20
|
syl |
|- ( A e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR ) |
22 |
|
1red |
|- ( A e. RR -> 1 e. RR ) |
23 |
19 21 22
|
leadd1d |
|- ( A e. RR -> ( ( A - ( 1 / 2 ) ) <_ ( |_ ` ( A + ( 1 / 2 ) ) ) <-> ( ( A - ( 1 / 2 ) ) + 1 ) <_ ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) ) ) |
24 |
17 23
|
mpbird |
|- ( A e. RR -> ( A - ( 1 / 2 ) ) <_ ( |_ ` ( A + ( 1 / 2 ) ) ) ) |
25 |
|
flle |
|- ( ( A + ( 1 / 2 ) ) e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) <_ ( A + ( 1 / 2 ) ) ) |
26 |
14 25
|
syl |
|- ( A e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) <_ ( A + ( 1 / 2 ) ) ) |
27 |
|
id |
|- ( A e. RR -> A e. RR ) |
28 |
12
|
a1i |
|- ( A e. RR -> ( 1 / 2 ) e. RR ) |
29 |
|
absdifle |
|- ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR /\ A e. RR /\ ( 1 / 2 ) e. RR ) -> ( ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) <_ ( 1 / 2 ) <-> ( ( A - ( 1 / 2 ) ) <_ ( |_ ` ( A + ( 1 / 2 ) ) ) /\ ( |_ ` ( A + ( 1 / 2 ) ) ) <_ ( A + ( 1 / 2 ) ) ) ) ) |
30 |
21 27 28 29
|
syl3anc |
|- ( A e. RR -> ( ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) <_ ( 1 / 2 ) <-> ( ( A - ( 1 / 2 ) ) <_ ( |_ ` ( A + ( 1 / 2 ) ) ) /\ ( |_ ` ( A + ( 1 / 2 ) ) ) <_ ( A + ( 1 / 2 ) ) ) ) ) |
31 |
24 26 30
|
mpbir2and |
|- ( A e. RR -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) <_ ( 1 / 2 ) ) |