| Step |
Hyp |
Ref |
Expression |
| 1 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
| 2 |
1
|
2timesi |
⊢ ( 2 · ( 1 / 2 ) ) = ( ( 1 / 2 ) + ( 1 / 2 ) ) |
| 3 |
|
2cn |
⊢ 2 ∈ ℂ |
| 4 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 5 |
3 4
|
recidi |
⊢ ( 2 · ( 1 / 2 ) ) = 1 |
| 6 |
2 5
|
eqtr3i |
⊢ ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 |
| 7 |
6
|
oveq2i |
⊢ ( ( 𝐴 − ( 1 / 2 ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( 𝐴 − ( 1 / 2 ) ) + 1 ) |
| 8 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 9 |
1
|
a1i |
⊢ ( 𝐴 ∈ ℝ → ( 1 / 2 ) ∈ ℂ ) |
| 10 |
8 9 9
|
nppcan3d |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 − ( 1 / 2 ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( 𝐴 + ( 1 / 2 ) ) ) |
| 11 |
7 10
|
eqtr3id |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 − ( 1 / 2 ) ) + 1 ) = ( 𝐴 + ( 1 / 2 ) ) ) |
| 12 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 13 |
|
readdcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ ) |
| 14 |
12 13
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ ) |
| 15 |
|
fllep1 |
⊢ ( ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ → ( 𝐴 + ( 1 / 2 ) ) ≤ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ) |
| 16 |
14 15
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + ( 1 / 2 ) ) ≤ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ) |
| 17 |
11 16
|
eqbrtrd |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 − ( 1 / 2 ) ) + 1 ) ≤ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ) |
| 18 |
|
resubcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( 𝐴 − ( 1 / 2 ) ) ∈ ℝ ) |
| 19 |
12 18
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 − ( 1 / 2 ) ) ∈ ℝ ) |
| 20 |
|
reflcl |
⊢ ( ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ) |
| 21 |
14 20
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ) |
| 22 |
|
1red |
⊢ ( 𝐴 ∈ ℝ → 1 ∈ ℝ ) |
| 23 |
19 21 22
|
leadd1d |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 − ( 1 / 2 ) ) ≤ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ↔ ( ( 𝐴 − ( 1 / 2 ) ) + 1 ) ≤ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ) ) |
| 24 |
17 23
|
mpbird |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 − ( 1 / 2 ) ) ≤ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) |
| 25 |
|
flle |
⊢ ( ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ≤ ( 𝐴 + ( 1 / 2 ) ) ) |
| 26 |
14 25
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ≤ ( 𝐴 + ( 1 / 2 ) ) ) |
| 27 |
|
id |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) |
| 28 |
12
|
a1i |
⊢ ( 𝐴 ∈ ℝ → ( 1 / 2 ) ∈ ℝ ) |
| 29 |
|
absdifle |
⊢ ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ≤ ( 1 / 2 ) ↔ ( ( 𝐴 − ( 1 / 2 ) ) ≤ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ≤ ( 𝐴 + ( 1 / 2 ) ) ) ) ) |
| 30 |
21 27 28 29
|
syl3anc |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ≤ ( 1 / 2 ) ↔ ( ( 𝐴 − ( 1 / 2 ) ) ≤ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ≤ ( 𝐴 + ( 1 / 2 ) ) ) ) ) |
| 31 |
24 26 30
|
mpbir2and |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ≤ ( 1 / 2 ) ) |