| Step |
Hyp |
Ref |
Expression |
| 1 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 2 |
|
readdcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ ) |
| 3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ ) |
| 4 |
|
reflcl |
⊢ ( ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ) |
| 5 |
3 4
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ) |
| 6 |
5
|
recnd |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℂ ) |
| 7 |
|
abscl |
⊢ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℂ → ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) ∈ ℝ ) |
| 8 |
6 7
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) ∈ ℝ ) |
| 9 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 10 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 11 |
9 10
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 12 |
|
1re |
⊢ 1 ∈ ℝ |
| 13 |
12
|
a1i |
⊢ ( 𝐴 ∈ ℝ → 1 ∈ ℝ ) |
| 14 |
8 11
|
resubcld |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 15 |
|
resubcl |
⊢ ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ∈ ℝ ) |
| 16 |
5 15
|
mpancom |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ∈ ℝ ) |
| 17 |
16
|
recnd |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ∈ ℂ ) |
| 18 |
|
abscl |
⊢ ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ∈ ℂ → ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ∈ ℝ ) |
| 19 |
17 18
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ∈ ℝ ) |
| 20 |
|
abs2dif |
⊢ ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − ( abs ‘ 𝐴 ) ) ≤ ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) |
| 21 |
6 9 20
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − ( abs ‘ 𝐴 ) ) ≤ ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) |
| 22 |
1
|
a1i |
⊢ ( 𝐴 ∈ ℝ → ( 1 / 2 ) ∈ ℝ ) |
| 23 |
|
rddif |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ≤ ( 1 / 2 ) ) |
| 24 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
| 25 |
1 12 24
|
ltleii |
⊢ ( 1 / 2 ) ≤ 1 |
| 26 |
25
|
a1i |
⊢ ( 𝐴 ∈ ℝ → ( 1 / 2 ) ≤ 1 ) |
| 27 |
19 22 13 23 26
|
letrd |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ≤ 1 ) |
| 28 |
14 19 13 21 27
|
letrd |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − ( abs ‘ 𝐴 ) ) ≤ 1 ) |
| 29 |
8 11 13 28
|
subled |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ≤ ( abs ‘ 𝐴 ) ) |
| 30 |
3
|
flcld |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℤ ) |
| 31 |
|
nn0abscl |
⊢ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℤ → ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) ∈ ℕ0 ) |
| 32 |
30 31
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) ∈ ℕ0 ) |
| 33 |
32
|
nn0zd |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) ∈ ℤ ) |
| 34 |
|
peano2zm |
⊢ ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) ∈ ℤ → ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ∈ ℤ ) |
| 35 |
33 34
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ∈ ℤ ) |
| 36 |
|
flge |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ∈ ℤ ) → ( ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ≤ ( abs ‘ 𝐴 ) ↔ ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ≤ ( ⌊ ‘ ( abs ‘ 𝐴 ) ) ) ) |
| 37 |
11 35 36
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ → ( ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ≤ ( abs ‘ 𝐴 ) ↔ ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ≤ ( ⌊ ‘ ( abs ‘ 𝐴 ) ) ) ) |
| 38 |
29 37
|
mpbid |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ≤ ( ⌊ ‘ ( abs ‘ 𝐴 ) ) ) |
| 39 |
|
reflcl |
⊢ ( ( abs ‘ 𝐴 ) ∈ ℝ → ( ⌊ ‘ ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 40 |
11 39
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 41 |
8 13 40
|
lesubaddd |
⊢ ( 𝐴 ∈ ℝ → ( ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ≤ ( ⌊ ‘ ( abs ‘ 𝐴 ) ) ↔ ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) ≤ ( ( ⌊ ‘ ( abs ‘ 𝐴 ) ) + 1 ) ) ) |
| 42 |
38 41
|
mpbid |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) ≤ ( ( ⌊ ‘ ( abs ‘ 𝐴 ) ) + 1 ) ) |