Metamath Proof Explorer


Theorem subled

Description: Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 ( 𝜑𝐴 ∈ ℝ )
ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
ltadd1d.3 ( 𝜑𝐶 ∈ ℝ )
subled.4 ( 𝜑 → ( 𝐴𝐵 ) ≤ 𝐶 )
Assertion subled ( 𝜑 → ( 𝐴𝐶 ) ≤ 𝐵 )

Proof

Step Hyp Ref Expression
1 leidd.1 ( 𝜑𝐴 ∈ ℝ )
2 ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
3 ltadd1d.3 ( 𝜑𝐶 ∈ ℝ )
4 subled.4 ( 𝜑 → ( 𝐴𝐵 ) ≤ 𝐶 )
5 suble ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 𝐶 ↔ ( 𝐴𝐶 ) ≤ 𝐵 ) )
6 1 2 3 5 syl3anc ( 𝜑 → ( ( 𝐴𝐵 ) ≤ 𝐶 ↔ ( 𝐴𝐶 ) ≤ 𝐵 ) )
7 4 6 mpbid ( 𝜑 → ( 𝐴𝐶 ) ≤ 𝐵 )