Metamath Proof Explorer


Theorem lesubaddd

Description: 'Less than or equal to' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 ( 𝜑𝐴 ∈ ℝ )
ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
ltadd1d.3 ( 𝜑𝐶 ∈ ℝ )
Assertion lesubaddd ( 𝜑 → ( ( 𝐴𝐵 ) ≤ 𝐶𝐴 ≤ ( 𝐶 + 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 leidd.1 ( 𝜑𝐴 ∈ ℝ )
2 ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
3 ltadd1d.3 ( 𝜑𝐶 ∈ ℝ )
4 lesubadd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 𝐶𝐴 ≤ ( 𝐶 + 𝐵 ) ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( ( 𝐴𝐵 ) ≤ 𝐶𝐴 ≤ ( 𝐶 + 𝐵 ) ) )