Step |
Hyp |
Ref |
Expression |
1 |
|
climfsum.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
climfsum.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
climfsum.3 |
|- ( ph -> A e. Fin ) |
4 |
|
climfsum.5 |
|- ( ( ph /\ k e. A ) -> F ~~> B ) |
5 |
|
climfsum.6 |
|- ( ph -> H e. W ) |
6 |
|
climfsum.7 |
|- ( ( ph /\ ( k e. A /\ n e. Z ) ) -> ( F ` n ) e. CC ) |
7 |
|
climfsum.8 |
|- ( ( ph /\ n e. Z ) -> ( H ` n ) = sum_ k e. A ( F ` n ) ) |
8 |
7
|
mpteq2dva |
|- ( ph -> ( n e. Z |-> ( H ` n ) ) = ( n e. Z |-> sum_ k e. A ( F ` n ) ) ) |
9 |
|
uzssz |
|- ( ZZ>= ` M ) C_ ZZ |
10 |
1 9
|
eqsstri |
|- Z C_ ZZ |
11 |
|
zssre |
|- ZZ C_ RR |
12 |
10 11
|
sstri |
|- Z C_ RR |
13 |
12
|
a1i |
|- ( ph -> Z C_ RR ) |
14 |
|
fvexd |
|- ( ( ph /\ ( n e. Z /\ k e. A ) ) -> ( F ` n ) e. _V ) |
15 |
2
|
adantr |
|- ( ( ph /\ k e. A ) -> M e. ZZ ) |
16 |
|
climrel |
|- Rel ~~> |
17 |
16
|
brrelex1i |
|- ( F ~~> B -> F e. _V ) |
18 |
4 17
|
syl |
|- ( ( ph /\ k e. A ) -> F e. _V ) |
19 |
|
eqid |
|- ( n e. Z |-> ( F ` n ) ) = ( n e. Z |-> ( F ` n ) ) |
20 |
1 19
|
climmpt |
|- ( ( M e. ZZ /\ F e. _V ) -> ( F ~~> B <-> ( n e. Z |-> ( F ` n ) ) ~~> B ) ) |
21 |
15 18 20
|
syl2anc |
|- ( ( ph /\ k e. A ) -> ( F ~~> B <-> ( n e. Z |-> ( F ` n ) ) ~~> B ) ) |
22 |
4 21
|
mpbid |
|- ( ( ph /\ k e. A ) -> ( n e. Z |-> ( F ` n ) ) ~~> B ) |
23 |
6
|
anassrs |
|- ( ( ( ph /\ k e. A ) /\ n e. Z ) -> ( F ` n ) e. CC ) |
24 |
23
|
fmpttd |
|- ( ( ph /\ k e. A ) -> ( n e. Z |-> ( F ` n ) ) : Z --> CC ) |
25 |
1 15 24
|
rlimclim |
|- ( ( ph /\ k e. A ) -> ( ( n e. Z |-> ( F ` n ) ) ~~>r B <-> ( n e. Z |-> ( F ` n ) ) ~~> B ) ) |
26 |
22 25
|
mpbird |
|- ( ( ph /\ k e. A ) -> ( n e. Z |-> ( F ` n ) ) ~~>r B ) |
27 |
13 3 14 26
|
fsumrlim |
|- ( ph -> ( n e. Z |-> sum_ k e. A ( F ` n ) ) ~~>r sum_ k e. A B ) |
28 |
3
|
adantr |
|- ( ( ph /\ n e. Z ) -> A e. Fin ) |
29 |
6
|
anass1rs |
|- ( ( ( ph /\ n e. Z ) /\ k e. A ) -> ( F ` n ) e. CC ) |
30 |
28 29
|
fsumcl |
|- ( ( ph /\ n e. Z ) -> sum_ k e. A ( F ` n ) e. CC ) |
31 |
30
|
fmpttd |
|- ( ph -> ( n e. Z |-> sum_ k e. A ( F ` n ) ) : Z --> CC ) |
32 |
1 2 31
|
rlimclim |
|- ( ph -> ( ( n e. Z |-> sum_ k e. A ( F ` n ) ) ~~>r sum_ k e. A B <-> ( n e. Z |-> sum_ k e. A ( F ` n ) ) ~~> sum_ k e. A B ) ) |
33 |
27 32
|
mpbid |
|- ( ph -> ( n e. Z |-> sum_ k e. A ( F ` n ) ) ~~> sum_ k e. A B ) |
34 |
8 33
|
eqbrtrd |
|- ( ph -> ( n e. Z |-> ( H ` n ) ) ~~> sum_ k e. A B ) |
35 |
|
eqid |
|- ( n e. Z |-> ( H ` n ) ) = ( n e. Z |-> ( H ` n ) ) |
36 |
1 35
|
climmpt |
|- ( ( M e. ZZ /\ H e. W ) -> ( H ~~> sum_ k e. A B <-> ( n e. Z |-> ( H ` n ) ) ~~> sum_ k e. A B ) ) |
37 |
2 5 36
|
syl2anc |
|- ( ph -> ( H ~~> sum_ k e. A B <-> ( n e. Z |-> ( H ` n ) ) ~~> sum_ k e. A B ) ) |
38 |
34 37
|
mpbird |
|- ( ph -> H ~~> sum_ k e. A B ) |