Metamath Proof Explorer


Theorem climfsum

Description: Limit of a finite sum of converging sequences. Note that F ( k ) is a collection of functions with implicit parameter k , each of which converges to B ( k ) as n ~> +oo . (Contributed by Mario Carneiro, 22-Jul-2014) (Proof shortened by Mario Carneiro, 22-May-2016)

Ref Expression
Hypotheses climfsum.1 Z=M
climfsum.2 φM
climfsum.3 φAFin
climfsum.5 φkAFB
climfsum.6 φHW
climfsum.7 φkAnZFn
climfsum.8 φnZHn=kAFn
Assertion climfsum φHkAB

Proof

Step Hyp Ref Expression
1 climfsum.1 Z=M
2 climfsum.2 φM
3 climfsum.3 φAFin
4 climfsum.5 φkAFB
5 climfsum.6 φHW
6 climfsum.7 φkAnZFn
7 climfsum.8 φnZHn=kAFn
8 7 mpteq2dva φnZHn=nZkAFn
9 uzssz M
10 1 9 eqsstri Z
11 zssre
12 10 11 sstri Z
13 12 a1i φZ
14 fvexd φnZkAFnV
15 2 adantr φkAM
16 climrel Rel
17 16 brrelex1i FBFV
18 4 17 syl φkAFV
19 eqid nZFn=nZFn
20 1 19 climmpt MFVFBnZFnB
21 15 18 20 syl2anc φkAFBnZFnB
22 4 21 mpbid φkAnZFnB
23 6 anassrs φkAnZFn
24 23 fmpttd φkAnZFn:Z
25 1 15 24 rlimclim φkAnZFnBnZFnB
26 22 25 mpbird φkAnZFnB
27 13 3 14 26 fsumrlim φnZkAFnkAB
28 3 adantr φnZAFin
29 6 anass1rs φnZkAFn
30 28 29 fsumcl φnZkAFn
31 30 fmpttd φnZkAFn:Z
32 1 2 31 rlimclim φnZkAFnkABnZkAFnkAB
33 27 32 mpbid φnZkAFnkAB
34 8 33 eqbrtrd φnZHnkAB
35 eqid nZHn=nZHn
36 1 35 climmpt MHWHkABnZHnkAB
37 2 5 36 syl2anc φHkABnZHnkAB
38 34 37 mpbird φHkAB