Metamath Proof Explorer


Theorem climfsum

Description: Limit of a finite sum of converging sequences. Note that F ( k ) is a collection of functions with implicit parameter k , each of which converges to B ( k ) as n ~> +oo . (Contributed by Mario Carneiro, 22-Jul-2014) (Proof shortened by Mario Carneiro, 22-May-2016)

Ref Expression
Hypotheses climfsum.1 Z = M
climfsum.2 φ M
climfsum.3 φ A Fin
climfsum.5 φ k A F B
climfsum.6 φ H W
climfsum.7 φ k A n Z F n
climfsum.8 φ n Z H n = k A F n
Assertion climfsum φ H k A B

Proof

Step Hyp Ref Expression
1 climfsum.1 Z = M
2 climfsum.2 φ M
3 climfsum.3 φ A Fin
4 climfsum.5 φ k A F B
5 climfsum.6 φ H W
6 climfsum.7 φ k A n Z F n
7 climfsum.8 φ n Z H n = k A F n
8 7 mpteq2dva φ n Z H n = n Z k A F n
9 uzssz M
10 1 9 eqsstri Z
11 zssre
12 10 11 sstri Z
13 12 a1i φ Z
14 fvexd φ n Z k A F n V
15 2 adantr φ k A M
16 climrel Rel
17 16 brrelex1i F B F V
18 4 17 syl φ k A F V
19 eqid n Z F n = n Z F n
20 1 19 climmpt M F V F B n Z F n B
21 15 18 20 syl2anc φ k A F B n Z F n B
22 4 21 mpbid φ k A n Z F n B
23 6 anassrs φ k A n Z F n
24 23 fmpttd φ k A n Z F n : Z
25 1 15 24 rlimclim φ k A n Z F n B n Z F n B
26 22 25 mpbird φ k A n Z F n B
27 13 3 14 26 fsumrlim φ n Z k A F n k A B
28 3 adantr φ n Z A Fin
29 6 anass1rs φ n Z k A F n
30 28 29 fsumcl φ n Z k A F n
31 30 fmpttd φ n Z k A F n : Z
32 1 2 31 rlimclim φ n Z k A F n k A B n Z k A F n k A B
33 27 32 mpbid φ n Z k A F n k A B
34 8 33 eqbrtrd φ n Z H n k A B
35 eqid n Z H n = n Z H n
36 1 35 climmpt M H W H k A B n Z H n k A B
37 2 5 36 syl2anc φ H k A B n Z H n k A B
38 34 37 mpbird φ H k A B