Description: Limit of a finite sum of converging sequences. Note that F ( k ) is a collection of functions with implicit parameter k , each of which converges to B ( k ) as n ~> +oo . (Contributed by Mario Carneiro, 22-Jul-2014) (Proof shortened by Mario Carneiro, 22-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climfsum.1 | |
|
climfsum.2 | |
||
climfsum.3 | |
||
climfsum.5 | |
||
climfsum.6 | |
||
climfsum.7 | |
||
climfsum.8 | |
||
Assertion | climfsum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climfsum.1 | |
|
2 | climfsum.2 | |
|
3 | climfsum.3 | |
|
4 | climfsum.5 | |
|
5 | climfsum.6 | |
|
6 | climfsum.7 | |
|
7 | climfsum.8 | |
|
8 | 7 | mpteq2dva | |
9 | uzssz | |
|
10 | 1 9 | eqsstri | |
11 | zssre | |
|
12 | 10 11 | sstri | |
13 | 12 | a1i | |
14 | fvexd | |
|
15 | 2 | adantr | |
16 | climrel | |
|
17 | 16 | brrelex1i | |
18 | 4 17 | syl | |
19 | eqid | |
|
20 | 1 19 | climmpt | |
21 | 15 18 20 | syl2anc | |
22 | 4 21 | mpbid | |
23 | 6 | anassrs | |
24 | 23 | fmpttd | |
25 | 1 15 24 | rlimclim | |
26 | 22 25 | mpbird | |
27 | 13 3 14 26 | fsumrlim | |
28 | 3 | adantr | |
29 | 6 | anass1rs | |
30 | 28 29 | fsumcl | |
31 | 30 | fmpttd | |
32 | 1 2 31 | rlimclim | |
33 | 27 32 | mpbid | |
34 | 8 33 | eqbrtrd | |
35 | eqid | |
|
36 | 1 35 | climmpt | |
37 | 2 5 36 | syl2anc | |
38 | 34 37 | mpbird | |