| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climadd.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
climadd.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
climadd.4 |
|- ( ph -> F ~~> A ) |
| 4 |
|
climsqz.5 |
|- ( ph -> G e. W ) |
| 5 |
|
climsqz.6 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 6 |
|
climsqz.7 |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
| 7 |
|
climsqz2.8 |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) <_ ( F ` k ) ) |
| 8 |
|
climsqz2.9 |
|- ( ( ph /\ k e. Z ) -> A <_ ( G ` k ) ) |
| 9 |
2
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> M e. ZZ ) |
| 10 |
|
simpr |
|- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
| 11 |
|
eqidd |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) |
| 12 |
3
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> F ~~> A ) |
| 13 |
1 9 10 11 12
|
climi2 |
|- ( ( ph /\ x e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) |
| 14 |
1
|
uztrn2 |
|- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 15 |
1 2 3 5
|
climrecl |
|- ( ph -> A e. RR ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ k e. Z ) -> A e. RR ) |
| 17 |
6 5 16 7
|
lesub1dd |
|- ( ( ph /\ k e. Z ) -> ( ( G ` k ) - A ) <_ ( ( F ` k ) - A ) ) |
| 18 |
16 6 8
|
abssubge0d |
|- ( ( ph /\ k e. Z ) -> ( abs ` ( ( G ` k ) - A ) ) = ( ( G ` k ) - A ) ) |
| 19 |
16 6 5 8 7
|
letrd |
|- ( ( ph /\ k e. Z ) -> A <_ ( F ` k ) ) |
| 20 |
16 5 19
|
abssubge0d |
|- ( ( ph /\ k e. Z ) -> ( abs ` ( ( F ` k ) - A ) ) = ( ( F ` k ) - A ) ) |
| 21 |
17 18 20
|
3brtr4d |
|- ( ( ph /\ k e. Z ) -> ( abs ` ( ( G ` k ) - A ) ) <_ ( abs ` ( ( F ` k ) - A ) ) ) |
| 22 |
21
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( abs ` ( ( G ` k ) - A ) ) <_ ( abs ` ( ( F ` k ) - A ) ) ) |
| 23 |
6
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( G ` k ) e. RR ) |
| 24 |
15
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> A e. RR ) |
| 25 |
23 24
|
resubcld |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( G ` k ) - A ) e. RR ) |
| 26 |
25
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( G ` k ) - A ) e. CC ) |
| 27 |
26
|
abscld |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( abs ` ( ( G ` k ) - A ) ) e. RR ) |
| 28 |
5
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 29 |
28 24
|
resubcld |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( F ` k ) - A ) e. RR ) |
| 30 |
29
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( F ` k ) - A ) e. CC ) |
| 31 |
30
|
abscld |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( abs ` ( ( F ` k ) - A ) ) e. RR ) |
| 32 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 33 |
32
|
ad2antlr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> x e. RR ) |
| 34 |
|
lelttr |
|- ( ( ( abs ` ( ( G ` k ) - A ) ) e. RR /\ ( abs ` ( ( F ` k ) - A ) ) e. RR /\ x e. RR ) -> ( ( ( abs ` ( ( G ` k ) - A ) ) <_ ( abs ` ( ( F ` k ) - A ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < x ) -> ( abs ` ( ( G ` k ) - A ) ) < x ) ) |
| 35 |
27 31 33 34
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( ( abs ` ( ( G ` k ) - A ) ) <_ ( abs ` ( ( F ` k ) - A ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < x ) -> ( abs ` ( ( G ` k ) - A ) ) < x ) ) |
| 36 |
22 35
|
mpand |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( abs ` ( ( F ` k ) - A ) ) < x -> ( abs ` ( ( G ` k ) - A ) ) < x ) ) |
| 37 |
14 36
|
sylan2 |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( ( F ` k ) - A ) ) < x -> ( abs ` ( ( G ` k ) - A ) ) < x ) ) |
| 38 |
37
|
anassrs |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( abs ` ( ( F ` k ) - A ) ) < x -> ( abs ` ( ( G ` k ) - A ) ) < x ) ) |
| 39 |
38
|
ralimdva |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x -> A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < x ) ) |
| 40 |
39
|
reximdva |
|- ( ( ph /\ x e. RR+ ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < x ) ) |
| 41 |
13 40
|
mpd |
|- ( ( ph /\ x e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < x ) |
| 42 |
41
|
ralrimiva |
|- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < x ) |
| 43 |
|
eqidd |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( G ` k ) ) |
| 44 |
15
|
recnd |
|- ( ph -> A e. CC ) |
| 45 |
6
|
recnd |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
| 46 |
1 2 4 43 44 45
|
clim2c |
|- ( ph -> ( G ~~> A <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < x ) ) |
| 47 |
42 46
|
mpbird |
|- ( ph -> G ~~> A ) |