Metamath Proof Explorer


Theorem nn0ssz

Description: Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004)

Ref Expression
Assertion nn0ssz 0 ⊆ ℤ

Proof

Step Hyp Ref Expression
1 df-n0 0 = ( ℕ ∪ { 0 } )
2 nnssz ℕ ⊆ ℤ
3 0z 0 ∈ ℤ
4 c0ex 0 ∈ V
5 4 snss ( 0 ∈ ℤ ↔ { 0 } ⊆ ℤ )
6 3 5 mpbi { 0 } ⊆ ℤ
7 2 6 unssi ( ℕ ∪ { 0 } ) ⊆ ℤ
8 1 7 eqsstri 0 ⊆ ℤ