Metamath Proof Explorer


Theorem expsubd

Description: Exponent subtraction law for integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φA
sqrecd.1 φA0
expclzd.3 φN
expsubd.3 φM
Assertion expsubd φAMN=AMAN

Proof

Step Hyp Ref Expression
1 expcld.1 φA
2 sqrecd.1 φA0
3 expclzd.3 φN
4 expsubd.3 φM
5 expsub AA0MNAMN=AMAN
6 1 2 4 3 5 syl22anc φAMN=AMAN