Metamath Proof Explorer


Theorem negsubdi2d

Description: Distribution of negative over subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φA
pncand.2 φB
Assertion negsubdi2d φAB=BA

Proof

Step Hyp Ref Expression
1 negidd.1 φA
2 pncand.2 φB
3 negsubdi2 ABAB=BA
4 1 2 3 syl2anc φAB=BA