Metamath Proof Explorer


Theorem negsubdi2d

Description: Distribution of negative over subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φ A
pncand.2 φ B
Assertion negsubdi2d φ A B = B A

Proof

Step Hyp Ref Expression
1 negidd.1 φ A
2 pncand.2 φ B
3 negsubdi2 A B A B = B A
4 1 2 3 syl2anc φ A B = B A