Metamath Proof Explorer


Theorem leaddsub2d

Description: 'Less than or equal to' relationship between and addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φA
ltnegd.2 φB
ltadd1d.3 φC
Assertion leaddsub2d φA+BCBCA

Proof

Step Hyp Ref Expression
1 leidd.1 φA
2 ltnegd.2 φB
3 ltadd1d.3 φC
4 leaddsub2 ABCA+BCBCA
5 1 2 3 4 syl3anc φA+BCBCA