Metamath Proof Explorer


Theorem lenegcon2d

Description: Contraposition of negative in 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φA
ltnegd.2 φB
lenegcon2d.3 φAB
Assertion lenegcon2d φBA

Proof

Step Hyp Ref Expression
1 leidd.1 φA
2 ltnegd.2 φB
3 lenegcon2d.3 φAB
4 lenegcon2 ABABBA
5 1 2 4 syl2anc φABBA
6 3 5 mpbid φBA