Metamath Proof Explorer


Theorem expclzd

Description: Closure law for integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φA
sqrecd.1 φA0
expclzd.3 φN
Assertion expclzd φAN

Proof

Step Hyp Ref Expression
1 expcld.1 φA
2 sqrecd.1 φA0
3 expclzd.3 φN
4 expclz AA0NAN
5 1 2 3 4 syl3anc φAN