Metamath Proof Explorer


Theorem suprleub

Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005) (Revised by Mario Carneiro, 6-Sep-2014)

Ref Expression
Assertion suprleub AAxyAyxBsupA<BzAzB

Proof

Step Hyp Ref Expression
1 suprnub AAxyAyxB¬B<supA<wA¬B<w
2 suprcl AAxyAyxsupA<
3 lenlt supA<BsupA<B¬B<supA<
4 2 3 sylan AAxyAyxBsupA<B¬B<supA<
5 simpl1 AAxyAyxBA
6 5 sselda AAxyAyxBwAw
7 simplr AAxyAyxBwAB
8 6 7 lenltd AAxyAyxBwAwB¬B<w
9 8 ralbidva AAxyAyxBwAwBwA¬B<w
10 1 4 9 3bitr4d AAxyAyxBsupA<BwAwB
11 breq1 w=zwBzB
12 11 cbvralvw wAwBzAzB
13 10 12 bitrdi AAxyAyxBsupA<BzAzB