Metamath Proof Explorer


Theorem suprcl

Description: Closure of supremum of a nonempty bounded set of reals. (Contributed by NM, 12-Oct-2004)

Ref Expression
Assertion suprcl AAxyAyxsupA<

Proof

Step Hyp Ref Expression
1 ltso <Or
2 1 a1i AAxyAyx<Or
3 sup3 AAxyAyxxyA¬x<yyy<xzAy<z
4 2 3 supcl AAxyAyxsupA<