Description: Closure of supremum of a nonempty bounded set of reals. (Contributed by NM, 12-Oct-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | suprcl | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> sup ( A , RR , < ) e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso | |- < Or RR |
|
2 | 1 | a1i | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> < Or RR ) |
3 | sup3 | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> E. x e. RR ( A. y e. A -. x < y /\ A. y e. RR ( y < x -> E. z e. A y < z ) ) ) |
|
4 | 2 3 | supcl | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> sup ( A , RR , < ) e. RR ) |