Metamath Proof Explorer


Theorem suprcl

Description: Closure of supremum of a nonempty bounded set of reals. (Contributed by NM, 12-Oct-2004)

Ref Expression
Assertion suprcl
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> sup ( A , RR , < ) e. RR )

Proof

Step Hyp Ref Expression
1 ltso
 |-  < Or RR
2 1 a1i
 |-  ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> < Or RR )
3 sup3
 |-  ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> E. x e. RR ( A. y e. A -. x < y /\ A. y e. RR ( y < x -> E. z e. A y < z ) ) )
4 2 3 supcl
 |-  ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> sup ( A , RR , < ) e. RR )