Metamath Proof Explorer


Theorem sup3

Description: A version of the completeness axiom for reals. (Contributed by NM, 12-Oct-2004)

Ref Expression
Assertion sup3 AAxyAyxxyA¬x<yyy<xzAy<z

Proof

Step Hyp Ref Expression
1 ssel AyAy
2 leloe yxyxy<xy=x
3 2 expcom xyyxy<xy=x
4 1 3 syl9 AxyAyxy<xy=x
5 4 imp31 AxyAyxy<xy=x
6 5 ralbidva AxyAyxyAy<xy=x
7 6 rexbidva AxyAyxxyAy<xy=x
8 7 anbi2d AAxyAyxAxyAy<xy=x
9 8 pm5.32i AAxyAyxAAxyAy<xy=x
10 3anass AAxyAyxAAxyAyx
11 3anass AAxyAy<xy=xAAxyAy<xy=x
12 9 10 11 3bitr4i AAxyAyxAAxyAy<xy=x
13 sup2 AAxyAy<xy=xxyA¬x<yyy<xzAy<z
14 12 13 sylbi AAxyAyxxyA¬x<yyy<xzAy<z