Metamath Proof Explorer


Theorem sup2

Description: A nonempty, bounded-above set of reals has a supremum. Stronger version of completeness axiom (it has a slightly weaker antecedent). (Contributed by NM, 19-Jan-1997)

Ref Expression
Assertion sup2 AAxyAy<xy=xxyA¬x<yyy<xzAy<z

Proof

Step Hyp Ref Expression
1 peano2re xx+1
2 1 adantr xyAy<xy=xx+1
3 2 a1i AxyAy<xy=xx+1
4 ssel AyAy
5 ltp1 xx<x+1
6 1 ancli xxx+1
7 lttr yxx+1y<xx<x+1y<x+1
8 7 3expb yxx+1y<xx<x+1y<x+1
9 6 8 sylan2 yxy<xx<x+1y<x+1
10 5 9 sylan2i yxy<xxy<x+1
11 10 exp4b yxy<xxy<x+1
12 11 com34 yxxy<xy<x+1
13 12 pm2.43d yxy<xy<x+1
14 13 imp yxy<xy<x+1
15 breq1 y=xy<x+1x<x+1
16 5 15 syl5ibrcom xy=xy<x+1
17 16 adantl yxy=xy<x+1
18 14 17 jaod yxy<xy=xy<x+1
19 18 ex yxy<xy=xy<x+1
20 4 19 syl6 AyAxy<xy=xy<x+1
21 20 com23 AxyAy<xy=xy<x+1
22 21 imp AxyAy<xy=xy<x+1
23 22 a2d AxyAy<xy=xyAy<x+1
24 23 ralimdv2 AxyAy<xy=xyAy<x+1
25 24 expimpd AxyAy<xy=xyAy<x+1
26 3 25 jcad AxyAy<xy=xx+1yAy<x+1
27 ovex x+1V
28 eleq1 z=x+1zx+1
29 breq2 z=x+1y<zy<x+1
30 29 ralbidv z=x+1yAy<zyAy<x+1
31 28 30 anbi12d z=x+1zyAy<zx+1yAy<x+1
32 27 31 spcev x+1yAy<x+1zzyAy<z
33 26 32 syl6 AxyAy<xy=xzzyAy<z
34 33 exlimdv AxxyAy<xy=xzzyAy<z
35 eleq1 z=xzx
36 breq2 z=xy<zy<x
37 36 ralbidv z=xyAy<zyAy<x
38 35 37 anbi12d z=xzyAy<zxyAy<x
39 38 cbvexvw zzyAy<zxxyAy<x
40 34 39 imbitrdi AxxyAy<xy=xxxyAy<x
41 df-rex xyAy<xy=xxxyAy<xy=x
42 df-rex xyAy<xxxyAy<x
43 40 41 42 3imtr4g AxyAy<xy=xxyAy<x
44 43 adantr AAxyAy<xy=xxyAy<x
45 44 imdistani AAxyAy<xy=xAAxyAy<x
46 df-3an AAxyAy<xy=xAAxyAy<xy=x
47 df-3an AAxyAy<xAAxyAy<x
48 45 46 47 3imtr4i AAxyAy<xy=xAAxyAy<x
49 axsup AAxyAy<xxyA¬x<yyy<xzAy<z
50 48 49 syl AAxyAy<xy=xxyA¬x<yyy<xzAy<z