Description: A nonempty, bounded-above set of reals has a supremum. Stronger version of completeness axiom (it has a slightly weaker antecedent). (Contributed by NM, 19-Jan-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | sup2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2re | |
|
2 | 1 | adantr | |
3 | 2 | a1i | |
4 | ssel | |
|
5 | ltp1 | |
|
6 | 1 | ancli | |
7 | lttr | |
|
8 | 7 | 3expb | |
9 | 6 8 | sylan2 | |
10 | 5 9 | sylan2i | |
11 | 10 | exp4b | |
12 | 11 | com34 | |
13 | 12 | pm2.43d | |
14 | 13 | imp | |
15 | breq1 | |
|
16 | 5 15 | syl5ibrcom | |
17 | 16 | adantl | |
18 | 14 17 | jaod | |
19 | 18 | ex | |
20 | 4 19 | syl6 | |
21 | 20 | com23 | |
22 | 21 | imp | |
23 | 22 | a2d | |
24 | 23 | ralimdv2 | |
25 | 24 | expimpd | |
26 | 3 25 | jcad | |
27 | ovex | |
|
28 | eleq1 | |
|
29 | breq2 | |
|
30 | 29 | ralbidv | |
31 | 28 30 | anbi12d | |
32 | 27 31 | spcev | |
33 | 26 32 | syl6 | |
34 | 33 | exlimdv | |
35 | eleq1 | |
|
36 | breq2 | |
|
37 | 36 | ralbidv | |
38 | 35 37 | anbi12d | |
39 | 38 | cbvexvw | |
40 | 34 39 | imbitrdi | |
41 | df-rex | |
|
42 | df-rex | |
|
43 | 40 41 42 | 3imtr4g | |
44 | 43 | adantr | |
45 | 44 | imdistani | |
46 | df-3an | |
|
47 | df-3an | |
|
48 | 45 46 47 | 3imtr4i | |
49 | axsup | |
|
50 | 48 49 | syl | |