Metamath Proof Explorer


Theorem axsup

Description: A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-sup with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005)

Ref Expression
Assertion axsup AAxyAy<xxyA¬x<yyy<xzAy<z

Proof

Step Hyp Ref Expression
1 ax-pre-sup AAxyAy<xxyA¬x<yyy<xzAy<z
2 1 3expia AAxyAy<xxyA¬x<yyy<xzAy<z
3 ssel2 AyAy
4 ltxrlt yxy<xy<x
5 3 4 sylan AyAxy<xy<x
6 5 an32s AxyAy<xy<x
7 6 ralbidva AxyAy<xyAy<x
8 7 rexbidva AxyAy<xxyAy<x
9 8 adantr AAxyAy<xxyAy<x
10 ltxrlt xyx<yx<y
11 10 ancoms yxx<yx<y
12 3 11 sylan AyAxx<yx<y
13 12 an32s AxyAx<yx<y
14 13 notbid AxyA¬x<y¬x<y
15 14 ralbidva AxyA¬x<yyA¬x<y
16 4 ancoms xyy<xy<x
17 16 adantll Axyy<xy<x
18 ssel2 AzAz
19 ltxrlt yzy<zy<z
20 19 ancoms zyy<zy<z
21 18 20 sylan AzAyy<zy<z
22 21 an32s AyzAy<zy<z
23 22 rexbidva AyzAy<zzAy<z
24 23 adantlr AxyzAy<zzAy<z
25 17 24 imbi12d Axyy<xzAy<zy<xzAy<z
26 25 ralbidva Axyy<xzAy<zyy<xzAy<z
27 15 26 anbi12d AxyA¬x<yyy<xzAy<zyA¬x<yyy<xzAy<z
28 27 rexbidva AxyA¬x<yyy<xzAy<zxyA¬x<yyy<xzAy<z
29 28 adantr AAxyA¬x<yyy<xzAy<zxyA¬x<yyy<xzAy<z
30 2 9 29 3imtr4d AAxyAy<xxyA¬x<yyy<xzAy<z
31 30 3impia AAxyAy<xxyA¬x<yyy<xzAy<z