Description: A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-sup with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | axsup | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pre-sup | |
|
2 | 1 | 3expia | |
3 | ssel2 | |
|
4 | ltxrlt | |
|
5 | 3 4 | sylan | |
6 | 5 | an32s | |
7 | 6 | ralbidva | |
8 | 7 | rexbidva | |
9 | 8 | adantr | |
10 | ltxrlt | |
|
11 | 10 | ancoms | |
12 | 3 11 | sylan | |
13 | 12 | an32s | |
14 | 13 | notbid | |
15 | 14 | ralbidva | |
16 | 4 | ancoms | |
17 | 16 | adantll | |
18 | ssel2 | |
|
19 | ltxrlt | |
|
20 | 19 | ancoms | |
21 | 18 20 | sylan | |
22 | 21 | an32s | |
23 | 22 | rexbidva | |
24 | 23 | adantlr | |
25 | 17 24 | imbi12d | |
26 | 25 | ralbidva | |
27 | 15 26 | anbi12d | |
28 | 27 | rexbidva | |
29 | 28 | adantr | |
30 | 2 9 29 | 3imtr4d | |
31 | 30 | 3impia | |