Metamath Proof Explorer


Theorem supaddc

Description: The supremum function distributes over addition in a sense similar to that in supmul1 . (Contributed by Brendan Leahy, 25-Sep-2017)

Ref Expression
Hypotheses supadd.a1 φ A
supadd.a2 φ A
supadd.a3 φ x y A y x
supaddc.b φ B
supaddc.c C = z | v A z = v + B
Assertion supaddc φ sup A < + B = sup C <

Proof

Step Hyp Ref Expression
1 supadd.a1 φ A
2 supadd.a2 φ A
3 supadd.a3 φ x y A y x
4 supaddc.b φ B
5 supaddc.c C = z | v A z = v + B
6 vex w V
7 oveq1 v = a v + B = a + B
8 7 eqeq2d v = a z = v + B z = a + B
9 8 cbvrexvw v A z = v + B a A z = a + B
10 eqeq1 z = w z = a + B w = a + B
11 10 rexbidv z = w a A z = a + B a A w = a + B
12 9 11 syl5bb z = w v A z = v + B a A w = a + B
13 6 12 5 elab2 w C a A w = a + B
14 1 sselda φ a A a
15 1 2 3 suprcld φ sup A <
16 15 adantr φ a A sup A <
17 4 adantr φ a A B
18 1 2 3 3jca φ A A x y A y x
19 suprub A A x y A y x a A a sup A <
20 18 19 sylan φ a A a sup A <
21 14 16 17 20 leadd1dd φ a A a + B sup A < + B
22 breq1 w = a + B w sup A < + B a + B sup A < + B
23 21 22 syl5ibrcom φ a A w = a + B w sup A < + B
24 23 rexlimdva φ a A w = a + B w sup A < + B
25 13 24 syl5bi φ w C w sup A < + B
26 25 ralrimiv φ w C w sup A < + B
27 14 17 readdcld φ a A a + B
28 eleq1a a + B w = a + B w
29 27 28 syl φ a A w = a + B w
30 29 rexlimdva φ a A w = a + B w
31 13 30 syl5bi φ w C w
32 31 ssrdv φ C
33 ovex a + B V
34 33 isseti w w = a + B
35 34 rgenw a A w w = a + B
36 r19.2z A a A w w = a + B a A w w = a + B
37 2 35 36 sylancl φ a A w w = a + B
38 13 exbii w w C w a A w = a + B
39 n0 C w w C
40 rexcom4 a A w w = a + B w a A w = a + B
41 38 39 40 3bitr4i C a A w w = a + B
42 37 41 sylibr φ C
43 15 4 readdcld φ sup A < + B
44 brralrspcev sup A < + B w C w sup A < + B x w C w x
45 43 26 44 syl2anc φ x w C w x
46 suprleub C C x w C w x sup A < + B sup C < sup A < + B w C w sup A < + B
47 32 42 45 43 46 syl31anc φ sup C < sup A < + B w C w sup A < + B
48 26 47 mpbird φ sup C < sup A < + B
49 32 42 45 suprcld φ sup C <
50 49 4 15 ltsubaddd φ sup C < B < sup A < sup C < < sup A < + B
51 50 biimpar φ sup C < < sup A < + B sup C < B < sup A <
52 49 4 resubcld φ sup C < B
53 suprlub A A x y A y x sup C < B sup C < B < sup A < a A sup C < B < a
54 1 2 3 52 53 syl31anc φ sup C < B < sup A < a A sup C < B < a
55 54 adantr φ sup C < < sup A < + B sup C < B < sup A < a A sup C < B < a
56 51 55 mpbid φ sup C < < sup A < + B a A sup C < B < a
57 27 adantlr φ sup C < < sup A < + B a A a + B
58 49 ad2antrr φ sup C < < sup A < + B a A sup C <
59 rspe a A w = a + B a A w = a + B
60 59 13 sylibr a A w = a + B w C
61 60 adantl φ a A w = a + B w C
62 simplrr φ a A w = a + B w C w = a + B
63 32 42 45 3jca φ C C x w C w x
64 suprub C C x w C w x w C w sup C <
65 63 64 sylan φ w C w sup C <
66 65 adantlr φ a A w = a + B w C w sup C <
67 62 66 eqbrtrrd φ a A w = a + B w C a + B sup C <
68 61 67 mpdan φ a A w = a + B a + B sup C <
69 68 expr φ a A w = a + B a + B sup C <
70 69 exlimdv φ a A w w = a + B a + B sup C <
71 34 70 mpi φ a A a + B sup C <
72 71 adantlr φ sup C < < sup A < + B a A a + B sup C <
73 57 58 72 lensymd φ sup C < < sup A < + B a A ¬ sup C < < a + B
74 4 ad2antrr φ sup C < < sup A < + B a A B
75 14 adantlr φ sup C < < sup A < + B a A a
76 58 74 75 ltsubaddd φ sup C < < sup A < + B a A sup C < B < a sup C < < a + B
77 73 76 mtbird φ sup C < < sup A < + B a A ¬ sup C < B < a
78 77 nrexdv φ sup C < < sup A < + B ¬ a A sup C < B < a
79 56 78 pm2.65da φ ¬ sup C < < sup A < + B
80 49 43 eqleltd φ sup C < = sup A < + B sup C < sup A < + B ¬ sup C < < sup A < + B
81 48 79 80 mpbir2and φ sup C < = sup A < + B
82 81 eqcomd φ sup A < + B = sup C <