| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supadd.a1 |
|- ( ph -> A C_ RR ) |
| 2 |
|
supadd.a2 |
|- ( ph -> A =/= (/) ) |
| 3 |
|
supadd.a3 |
|- ( ph -> E. x e. RR A. y e. A y <_ x ) |
| 4 |
|
supaddc.b |
|- ( ph -> B e. RR ) |
| 5 |
|
supaddc.c |
|- C = { z | E. v e. A z = ( v + B ) } |
| 6 |
|
vex |
|- w e. _V |
| 7 |
|
oveq1 |
|- ( v = a -> ( v + B ) = ( a + B ) ) |
| 8 |
7
|
eqeq2d |
|- ( v = a -> ( z = ( v + B ) <-> z = ( a + B ) ) ) |
| 9 |
8
|
cbvrexvw |
|- ( E. v e. A z = ( v + B ) <-> E. a e. A z = ( a + B ) ) |
| 10 |
|
eqeq1 |
|- ( z = w -> ( z = ( a + B ) <-> w = ( a + B ) ) ) |
| 11 |
10
|
rexbidv |
|- ( z = w -> ( E. a e. A z = ( a + B ) <-> E. a e. A w = ( a + B ) ) ) |
| 12 |
9 11
|
bitrid |
|- ( z = w -> ( E. v e. A z = ( v + B ) <-> E. a e. A w = ( a + B ) ) ) |
| 13 |
6 12 5
|
elab2 |
|- ( w e. C <-> E. a e. A w = ( a + B ) ) |
| 14 |
1
|
sselda |
|- ( ( ph /\ a e. A ) -> a e. RR ) |
| 15 |
1 2 3
|
suprcld |
|- ( ph -> sup ( A , RR , < ) e. RR ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ a e. A ) -> sup ( A , RR , < ) e. RR ) |
| 17 |
4
|
adantr |
|- ( ( ph /\ a e. A ) -> B e. RR ) |
| 18 |
1 2 3
|
3jca |
|- ( ph -> ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) ) |
| 19 |
|
suprub |
|- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ a e. A ) -> a <_ sup ( A , RR , < ) ) |
| 20 |
18 19
|
sylan |
|- ( ( ph /\ a e. A ) -> a <_ sup ( A , RR , < ) ) |
| 21 |
14 16 17 20
|
leadd1dd |
|- ( ( ph /\ a e. A ) -> ( a + B ) <_ ( sup ( A , RR , < ) + B ) ) |
| 22 |
|
breq1 |
|- ( w = ( a + B ) -> ( w <_ ( sup ( A , RR , < ) + B ) <-> ( a + B ) <_ ( sup ( A , RR , < ) + B ) ) ) |
| 23 |
21 22
|
syl5ibrcom |
|- ( ( ph /\ a e. A ) -> ( w = ( a + B ) -> w <_ ( sup ( A , RR , < ) + B ) ) ) |
| 24 |
23
|
rexlimdva |
|- ( ph -> ( E. a e. A w = ( a + B ) -> w <_ ( sup ( A , RR , < ) + B ) ) ) |
| 25 |
13 24
|
biimtrid |
|- ( ph -> ( w e. C -> w <_ ( sup ( A , RR , < ) + B ) ) ) |
| 26 |
25
|
ralrimiv |
|- ( ph -> A. w e. C w <_ ( sup ( A , RR , < ) + B ) ) |
| 27 |
14 17
|
readdcld |
|- ( ( ph /\ a e. A ) -> ( a + B ) e. RR ) |
| 28 |
|
eleq1a |
|- ( ( a + B ) e. RR -> ( w = ( a + B ) -> w e. RR ) ) |
| 29 |
27 28
|
syl |
|- ( ( ph /\ a e. A ) -> ( w = ( a + B ) -> w e. RR ) ) |
| 30 |
29
|
rexlimdva |
|- ( ph -> ( E. a e. A w = ( a + B ) -> w e. RR ) ) |
| 31 |
13 30
|
biimtrid |
|- ( ph -> ( w e. C -> w e. RR ) ) |
| 32 |
31
|
ssrdv |
|- ( ph -> C C_ RR ) |
| 33 |
|
ovex |
|- ( a + B ) e. _V |
| 34 |
33
|
isseti |
|- E. w w = ( a + B ) |
| 35 |
34
|
rgenw |
|- A. a e. A E. w w = ( a + B ) |
| 36 |
|
r19.2z |
|- ( ( A =/= (/) /\ A. a e. A E. w w = ( a + B ) ) -> E. a e. A E. w w = ( a + B ) ) |
| 37 |
2 35 36
|
sylancl |
|- ( ph -> E. a e. A E. w w = ( a + B ) ) |
| 38 |
13
|
exbii |
|- ( E. w w e. C <-> E. w E. a e. A w = ( a + B ) ) |
| 39 |
|
n0 |
|- ( C =/= (/) <-> E. w w e. C ) |
| 40 |
|
rexcom4 |
|- ( E. a e. A E. w w = ( a + B ) <-> E. w E. a e. A w = ( a + B ) ) |
| 41 |
38 39 40
|
3bitr4i |
|- ( C =/= (/) <-> E. a e. A E. w w = ( a + B ) ) |
| 42 |
37 41
|
sylibr |
|- ( ph -> C =/= (/) ) |
| 43 |
15 4
|
readdcld |
|- ( ph -> ( sup ( A , RR , < ) + B ) e. RR ) |
| 44 |
|
brralrspcev |
|- ( ( ( sup ( A , RR , < ) + B ) e. RR /\ A. w e. C w <_ ( sup ( A , RR , < ) + B ) ) -> E. x e. RR A. w e. C w <_ x ) |
| 45 |
43 26 44
|
syl2anc |
|- ( ph -> E. x e. RR A. w e. C w <_ x ) |
| 46 |
|
suprleub |
|- ( ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) /\ ( sup ( A , RR , < ) + B ) e. RR ) -> ( sup ( C , RR , < ) <_ ( sup ( A , RR , < ) + B ) <-> A. w e. C w <_ ( sup ( A , RR , < ) + B ) ) ) |
| 47 |
32 42 45 43 46
|
syl31anc |
|- ( ph -> ( sup ( C , RR , < ) <_ ( sup ( A , RR , < ) + B ) <-> A. w e. C w <_ ( sup ( A , RR , < ) + B ) ) ) |
| 48 |
26 47
|
mpbird |
|- ( ph -> sup ( C , RR , < ) <_ ( sup ( A , RR , < ) + B ) ) |
| 49 |
32 42 45
|
suprcld |
|- ( ph -> sup ( C , RR , < ) e. RR ) |
| 50 |
49 4 15
|
ltsubaddd |
|- ( ph -> ( ( sup ( C , RR , < ) - B ) < sup ( A , RR , < ) <-> sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) ) |
| 51 |
50
|
biimpar |
|- ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) -> ( sup ( C , RR , < ) - B ) < sup ( A , RR , < ) ) |
| 52 |
49 4
|
resubcld |
|- ( ph -> ( sup ( C , RR , < ) - B ) e. RR ) |
| 53 |
|
suprlub |
|- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ ( sup ( C , RR , < ) - B ) e. RR ) -> ( ( sup ( C , RR , < ) - B ) < sup ( A , RR , < ) <-> E. a e. A ( sup ( C , RR , < ) - B ) < a ) ) |
| 54 |
1 2 3 52 53
|
syl31anc |
|- ( ph -> ( ( sup ( C , RR , < ) - B ) < sup ( A , RR , < ) <-> E. a e. A ( sup ( C , RR , < ) - B ) < a ) ) |
| 55 |
54
|
adantr |
|- ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) -> ( ( sup ( C , RR , < ) - B ) < sup ( A , RR , < ) <-> E. a e. A ( sup ( C , RR , < ) - B ) < a ) ) |
| 56 |
51 55
|
mpbid |
|- ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) -> E. a e. A ( sup ( C , RR , < ) - B ) < a ) |
| 57 |
27
|
adantlr |
|- ( ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) /\ a e. A ) -> ( a + B ) e. RR ) |
| 58 |
49
|
ad2antrr |
|- ( ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) /\ a e. A ) -> sup ( C , RR , < ) e. RR ) |
| 59 |
|
rspe |
|- ( ( a e. A /\ w = ( a + B ) ) -> E. a e. A w = ( a + B ) ) |
| 60 |
59 13
|
sylibr |
|- ( ( a e. A /\ w = ( a + B ) ) -> w e. C ) |
| 61 |
60
|
adantl |
|- ( ( ph /\ ( a e. A /\ w = ( a + B ) ) ) -> w e. C ) |
| 62 |
|
simplrr |
|- ( ( ( ph /\ ( a e. A /\ w = ( a + B ) ) ) /\ w e. C ) -> w = ( a + B ) ) |
| 63 |
32 42 45
|
3jca |
|- ( ph -> ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) ) |
| 64 |
|
suprub |
|- ( ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) /\ w e. C ) -> w <_ sup ( C , RR , < ) ) |
| 65 |
63 64
|
sylan |
|- ( ( ph /\ w e. C ) -> w <_ sup ( C , RR , < ) ) |
| 66 |
65
|
adantlr |
|- ( ( ( ph /\ ( a e. A /\ w = ( a + B ) ) ) /\ w e. C ) -> w <_ sup ( C , RR , < ) ) |
| 67 |
62 66
|
eqbrtrrd |
|- ( ( ( ph /\ ( a e. A /\ w = ( a + B ) ) ) /\ w e. C ) -> ( a + B ) <_ sup ( C , RR , < ) ) |
| 68 |
61 67
|
mpdan |
|- ( ( ph /\ ( a e. A /\ w = ( a + B ) ) ) -> ( a + B ) <_ sup ( C , RR , < ) ) |
| 69 |
68
|
expr |
|- ( ( ph /\ a e. A ) -> ( w = ( a + B ) -> ( a + B ) <_ sup ( C , RR , < ) ) ) |
| 70 |
69
|
exlimdv |
|- ( ( ph /\ a e. A ) -> ( E. w w = ( a + B ) -> ( a + B ) <_ sup ( C , RR , < ) ) ) |
| 71 |
34 70
|
mpi |
|- ( ( ph /\ a e. A ) -> ( a + B ) <_ sup ( C , RR , < ) ) |
| 72 |
71
|
adantlr |
|- ( ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) /\ a e. A ) -> ( a + B ) <_ sup ( C , RR , < ) ) |
| 73 |
57 58 72
|
lensymd |
|- ( ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) /\ a e. A ) -> -. sup ( C , RR , < ) < ( a + B ) ) |
| 74 |
4
|
ad2antrr |
|- ( ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) /\ a e. A ) -> B e. RR ) |
| 75 |
14
|
adantlr |
|- ( ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) /\ a e. A ) -> a e. RR ) |
| 76 |
58 74 75
|
ltsubaddd |
|- ( ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) /\ a e. A ) -> ( ( sup ( C , RR , < ) - B ) < a <-> sup ( C , RR , < ) < ( a + B ) ) ) |
| 77 |
73 76
|
mtbird |
|- ( ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) /\ a e. A ) -> -. ( sup ( C , RR , < ) - B ) < a ) |
| 78 |
77
|
nrexdv |
|- ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) -> -. E. a e. A ( sup ( C , RR , < ) - B ) < a ) |
| 79 |
56 78
|
pm2.65da |
|- ( ph -> -. sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) |
| 80 |
49 43
|
eqleltd |
|- ( ph -> ( sup ( C , RR , < ) = ( sup ( A , RR , < ) + B ) <-> ( sup ( C , RR , < ) <_ ( sup ( A , RR , < ) + B ) /\ -. sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) ) ) |
| 81 |
48 79 80
|
mpbir2and |
|- ( ph -> sup ( C , RR , < ) = ( sup ( A , RR , < ) + B ) ) |
| 82 |
81
|
eqcomd |
|- ( ph -> ( sup ( A , RR , < ) + B ) = sup ( C , RR , < ) ) |