Metamath Proof Explorer


Theorem suprcld

Description: Natural deduction form of suprcl . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses suprcld.2 φA
suprcld.1 φA
suprcld.4 φxyAyx
Assertion suprcld φsupA<

Proof

Step Hyp Ref Expression
1 suprcld.2 φA
2 suprcld.1 φA
3 suprcld.4 φxyAyx
4 suprcl AAxyAyxsupA<
5 1 2 3 4 syl3anc φsupA<