Metamath Proof Explorer


Theorem supmul1

Description: The supremum function distributes over multiplication, in the sense that A x. ( sup B ) = sup ( A x. B ) , where A x. B is shorthand for { A x. b | b e. B } and is defined as C below. This is the simple version, with only one set argument; see supmul for the more general case with two set arguments. (Contributed by Mario Carneiro, 5-Jul-2013)

Ref Expression
Hypotheses supmul1.1 C = z | v B z = A v
supmul1.2 φ A 0 A x B 0 x B B x y B y x
Assertion supmul1 φ A sup B < = sup C <

Proof

Step Hyp Ref Expression
1 supmul1.1 C = z | v B z = A v
2 supmul1.2 φ A 0 A x B 0 x B B x y B y x
3 vex w V
4 oveq2 v = b A v = A b
5 4 eqeq2d v = b z = A v z = A b
6 5 cbvrexvw v B z = A v b B z = A b
7 eqeq1 z = w z = A b w = A b
8 7 rexbidv z = w b B z = A b b B w = A b
9 6 8 syl5bb z = w v B z = A v b B w = A b
10 3 9 1 elab2 w C b B w = A b
11 simpr A 0 A x B 0 x B B x y B y x B B x y B y x
12 2 11 sylbi φ B B x y B y x
13 12 simp1d φ B
14 13 sselda φ b B b
15 suprcl B B x y B y x sup B <
16 12 15 syl φ sup B <
17 16 adantr φ b B sup B <
18 simpl1 A 0 A x B 0 x B B x y B y x A
19 2 18 sylbi φ A
20 simpl2 A 0 A x B 0 x B B x y B y x 0 A
21 2 20 sylbi φ 0 A
22 19 21 jca φ A 0 A
23 22 adantr φ b B A 0 A
24 suprub B B x y B y x b B b sup B <
25 12 24 sylan φ b B b sup B <
26 lemul2a b sup B < A 0 A b sup B < A b A sup B <
27 14 17 23 25 26 syl31anc φ b B A b A sup B <
28 breq1 w = A b w A sup B < A b A sup B <
29 27 28 syl5ibrcom φ b B w = A b w A sup B <
30 29 rexlimdva φ b B w = A b w A sup B <
31 10 30 syl5bi φ w C w A sup B <
32 31 ralrimiv φ w C w A sup B <
33 19 adantr φ b B A
34 33 14 remulcld φ b B A b
35 eleq1a A b w = A b w
36 34 35 syl φ b B w = A b w
37 36 rexlimdva φ b B w = A b w
38 10 37 syl5bi φ w C w
39 38 ssrdv φ C
40 simpr2 A 0 A x B 0 x B B x y B y x B
41 2 40 sylbi φ B
42 ovex A b V
43 42 isseti w w = A b
44 43 rgenw b B w w = A b
45 r19.2z B b B w w = A b b B w w = A b
46 41 44 45 sylancl φ b B w w = A b
47 10 exbii w w C w b B w = A b
48 n0 C w w C
49 rexcom4 b B w w = A b w b B w = A b
50 47 48 49 3bitr4i C b B w w = A b
51 46 50 sylibr φ C
52 19 16 remulcld φ A sup B <
53 brralrspcev A sup B < w C w A sup B < x w C w x
54 52 32 53 syl2anc φ x w C w x
55 39 51 54 3jca φ C C x w C w x
56 suprleub C C x w C w x A sup B < sup C < A sup B < w C w A sup B <
57 55 52 56 syl2anc φ sup C < A sup B < w C w A sup B <
58 32 57 mpbird φ sup C < A sup B <
59 simpr φ sup C < < A sup B < sup C < < A sup B <
60 suprcl C C x w C w x sup C <
61 55 60 syl φ sup C <
62 61 adantr φ sup C < < A sup B < sup C <
63 16 adantr φ sup C < < A sup B < sup B <
64 19 adantr φ sup C < < A sup B < A
65 n0 B b b B
66 0red φ b B 0
67 simpl3 A 0 A x B 0 x B B x y B y x x B 0 x
68 2 67 sylbi φ x B 0 x
69 breq2 x = b 0 x 0 b
70 69 rspccva x B 0 x b B 0 b
71 68 70 sylan φ b B 0 b
72 66 14 17 71 25 letrd φ b B 0 sup B <
73 72 ex φ b B 0 sup B <
74 73 exlimdv φ b b B 0 sup B <
75 65 74 syl5bi φ B 0 sup B <
76 41 75 mpd φ 0 sup B <
77 76 adantr φ sup C < < A sup B < 0 sup B <
78 0red φ w C 0
79 38 imp φ w C w
80 61 adantr φ w C sup C <
81 21 adantr φ b B 0 A
82 33 14 81 71 mulge0d φ b B 0 A b
83 breq2 w = A b 0 w 0 A b
84 82 83 syl5ibrcom φ b B w = A b 0 w
85 84 rexlimdva φ b B w = A b 0 w
86 10 85 syl5bi φ w C 0 w
87 86 imp φ w C 0 w
88 suprub C C x w C w x w C w sup C <
89 55 88 sylan φ w C w sup C <
90 78 79 80 87 89 letrd φ w C 0 sup C <
91 90 ex φ w C 0 sup C <
92 91 exlimdv φ w w C 0 sup C <
93 48 92 syl5bi φ C 0 sup C <
94 51 93 mpd φ 0 sup C <
95 94 anim1i φ sup C < < A sup B < 0 sup C < sup C < < A sup B <
96 0red φ 0
97 lelttr 0 sup C < A sup B < 0 sup C < sup C < < A sup B < 0 < A sup B <
98 96 61 52 97 syl3anc φ 0 sup C < sup C < < A sup B < 0 < A sup B <
99 98 adantr φ sup C < < A sup B < 0 sup C < sup C < < A sup B < 0 < A sup B <
100 95 99 mpd φ sup C < < A sup B < 0 < A sup B <
101 prodgt02 A sup B < 0 sup B < 0 < A sup B < 0 < A
102 64 63 77 100 101 syl22anc φ sup C < < A sup B < 0 < A
103 ltdivmul sup C < sup B < A 0 < A sup C < A < sup B < sup C < < A sup B <
104 62 63 64 102 103 syl112anc φ sup C < < A sup B < sup C < A < sup B < sup C < < A sup B <
105 59 104 mpbird φ sup C < < A sup B < sup C < A < sup B <
106 12 adantr φ sup C < < A sup B < B B x y B y x
107 102 gt0ne0d φ sup C < < A sup B < A 0
108 62 64 107 redivcld φ sup C < < A sup B < sup C < A
109 suprlub B B x y B y x sup C < A sup C < A < sup B < b B sup C < A < b
110 106 108 109 syl2anc φ sup C < < A sup B < sup C < A < sup B < b B sup C < A < b
111 105 110 mpbid φ sup C < < A sup B < b B sup C < A < b
112 34 adantlr φ sup C < < A sup B < b B A b
113 61 ad2antrr φ sup C < < A sup B < b B sup C <
114 rspe b B w = A b b B w = A b
115 114 10 sylibr b B w = A b w C
116 115 adantl φ b B w = A b w C
117 simplrr φ b B w = A b w C w = A b
118 89 adantlr φ b B w = A b w C w sup C <
119 117 118 eqbrtrrd φ b B w = A b w C A b sup C <
120 116 119 mpdan φ b B w = A b A b sup C <
121 120 expr φ b B w = A b A b sup C <
122 121 exlimdv φ b B w w = A b A b sup C <
123 43 122 mpi φ b B A b sup C <
124 123 adantlr φ sup C < < A sup B < b B A b sup C <
125 112 113 124 lensymd φ sup C < < A sup B < b B ¬ sup C < < A b
126 14 adantlr φ sup C < < A sup B < b B b
127 19 ad2antrr φ sup C < < A sup B < b B A
128 102 adantr φ sup C < < A sup B < b B 0 < A
129 ltdivmul sup C < b A 0 < A sup C < A < b sup C < < A b
130 113 126 127 128 129 syl112anc φ sup C < < A sup B < b B sup C < A < b sup C < < A b
131 125 130 mtbird φ sup C < < A sup B < b B ¬ sup C < A < b
132 131 nrexdv φ sup C < < A sup B < ¬ b B sup C < A < b
133 111 132 pm2.65da φ ¬ sup C < < A sup B <
134 58 133 jca φ sup C < A sup B < ¬ sup C < < A sup B <
135 61 52 eqleltd φ sup C < = A sup B < sup C < A sup B < ¬ sup C < < A sup B <
136 134 135 mpbird φ sup C < = A sup B <
137 136 eqcomd φ A sup B < = sup C <