Metamath Proof Explorer


Theorem supmullem1

Description: Lemma for supmul . (Contributed by Mario Carneiro, 5-Jul-2013)

Ref Expression
Hypotheses supmul.1 C = z | v A b B z = v b
supmul.2 φ x A 0 x x B 0 x A A x y A y x B B x y B y x
Assertion supmullem1 φ w C w sup A < sup B <

Proof

Step Hyp Ref Expression
1 supmul.1 C = z | v A b B z = v b
2 supmul.2 φ x A 0 x x B 0 x A A x y A y x B B x y B y x
3 vex w V
4 oveq1 v = a v b = a b
5 4 eqeq2d v = a z = v b z = a b
6 5 rexbidv v = a b B z = v b b B z = a b
7 6 cbvrexvw v A b B z = v b a A b B z = a b
8 eqeq1 z = w z = a b w = a b
9 8 2rexbidv z = w a A b B z = a b a A b B w = a b
10 7 9 syl5bb z = w v A b B z = v b a A b B w = a b
11 3 10 1 elab2 w C a A b B w = a b
12 2 simp2bi φ A A x y A y x
13 12 simp1d φ A
14 13 sselda φ a A a
15 14 adantrr φ a A b B a
16 suprcl A A x y A y x sup A <
17 12 16 syl φ sup A <
18 17 adantr φ a A b B sup A <
19 2 simp3bi φ B B x y B y x
20 19 simp1d φ B
21 20 sselda φ b B b
22 21 adantrl φ a A b B b
23 suprcl B B x y B y x sup B <
24 19 23 syl φ sup B <
25 24 adantr φ a A b B sup B <
26 simp1l x A 0 x x B 0 x A A x y A y x B B x y B y x x A 0 x
27 2 26 sylbi φ x A 0 x
28 breq2 x = a 0 x 0 a
29 28 rspccv x A 0 x a A 0 a
30 27 29 syl φ a A 0 a
31 30 imp φ a A 0 a
32 31 adantrr φ a A b B 0 a
33 simp1r x A 0 x x B 0 x A A x y A y x B B x y B y x x B 0 x
34 2 33 sylbi φ x B 0 x
35 breq2 x = b 0 x 0 b
36 35 rspccv x B 0 x b B 0 b
37 34 36 syl φ b B 0 b
38 37 imp φ b B 0 b
39 38 adantrl φ a A b B 0 b
40 suprub A A x y A y x a A a sup A <
41 12 40 sylan φ a A a sup A <
42 41 adantrr φ a A b B a sup A <
43 suprub B B x y B y x b B b sup B <
44 19 43 sylan φ b B b sup B <
45 44 adantrl φ a A b B b sup B <
46 15 18 22 25 32 39 42 45 lemul12ad φ a A b B a b sup A < sup B <
47 46 ex φ a A b B a b sup A < sup B <
48 breq1 w = a b w sup A < sup B < a b sup A < sup B <
49 48 biimprcd a b sup A < sup B < w = a b w sup A < sup B <
50 47 49 syl6 φ a A b B w = a b w sup A < sup B <
51 50 rexlimdvv φ a A b B w = a b w sup A < sup B <
52 11 51 syl5bi φ w C w sup A < sup B <
53 52 ralrimiv φ w C w sup A < sup B <