Metamath Proof Explorer


Theorem supmullem1

Description: Lemma for supmul . (Contributed by Mario Carneiro, 5-Jul-2013)

Ref Expression
Hypotheses supmul.1 C=z|vAbBz=vb
supmul.2 φxA0xxB0xAAxyAyxBBxyByx
Assertion supmullem1 φwCwsupA<supB<

Proof

Step Hyp Ref Expression
1 supmul.1 C=z|vAbBz=vb
2 supmul.2 φxA0xxB0xAAxyAyxBBxyByx
3 vex wV
4 oveq1 v=avb=ab
5 4 eqeq2d v=az=vbz=ab
6 5 rexbidv v=abBz=vbbBz=ab
7 6 cbvrexvw vAbBz=vbaAbBz=ab
8 eqeq1 z=wz=abw=ab
9 8 2rexbidv z=waAbBz=abaAbBw=ab
10 7 9 bitrid z=wvAbBz=vbaAbBw=ab
11 3 10 1 elab2 wCaAbBw=ab
12 2 simp2bi φAAxyAyx
13 12 simp1d φA
14 13 sselda φaAa
15 14 adantrr φaAbBa
16 suprcl AAxyAyxsupA<
17 12 16 syl φsupA<
18 17 adantr φaAbBsupA<
19 2 simp3bi φBBxyByx
20 19 simp1d φB
21 20 sselda φbBb
22 21 adantrl φaAbBb
23 suprcl BBxyByxsupB<
24 19 23 syl φsupB<
25 24 adantr φaAbBsupB<
26 simp1l xA0xxB0xAAxyAyxBBxyByxxA0x
27 2 26 sylbi φxA0x
28 breq2 x=a0x0a
29 28 rspccv xA0xaA0a
30 27 29 syl φaA0a
31 30 imp φaA0a
32 31 adantrr φaAbB0a
33 simp1r xA0xxB0xAAxyAyxBBxyByxxB0x
34 2 33 sylbi φxB0x
35 breq2 x=b0x0b
36 35 rspccv xB0xbB0b
37 34 36 syl φbB0b
38 37 imp φbB0b
39 38 adantrl φaAbB0b
40 suprub AAxyAyxaAasupA<
41 12 40 sylan φaAasupA<
42 41 adantrr φaAbBasupA<
43 suprub BBxyByxbBbsupB<
44 19 43 sylan φbBbsupB<
45 44 adantrl φaAbBbsupB<
46 15 18 22 25 32 39 42 45 lemul12ad φaAbBabsupA<supB<
47 46 ex φaAbBabsupA<supB<
48 breq1 w=abwsupA<supB<absupA<supB<
49 48 biimprcd absupA<supB<w=abwsupA<supB<
50 47 49 syl6 φaAbBw=abwsupA<supB<
51 50 rexlimdvv φaAbBw=abwsupA<supB<
52 11 51 biimtrid φwCwsupA<supB<
53 52 ralrimiv φwCwsupA<supB<