Description: Lemma for supmul . (Contributed by Mario Carneiro, 5-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | supmul.1 | |
|
supmul.2 | |
||
Assertion | supmullem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmul.1 | |
|
2 | supmul.2 | |
|
3 | vex | |
|
4 | oveq1 | |
|
5 | 4 | eqeq2d | |
6 | 5 | rexbidv | |
7 | 6 | cbvrexvw | |
8 | eqeq1 | |
|
9 | 8 | 2rexbidv | |
10 | 7 9 | bitrid | |
11 | 3 10 1 | elab2 | |
12 | 2 | simp2bi | |
13 | 12 | simp1d | |
14 | 13 | sselda | |
15 | 14 | adantrr | |
16 | suprcl | |
|
17 | 12 16 | syl | |
18 | 17 | adantr | |
19 | 2 | simp3bi | |
20 | 19 | simp1d | |
21 | 20 | sselda | |
22 | 21 | adantrl | |
23 | suprcl | |
|
24 | 19 23 | syl | |
25 | 24 | adantr | |
26 | simp1l | |
|
27 | 2 26 | sylbi | |
28 | breq2 | |
|
29 | 28 | rspccv | |
30 | 27 29 | syl | |
31 | 30 | imp | |
32 | 31 | adantrr | |
33 | simp1r | |
|
34 | 2 33 | sylbi | |
35 | breq2 | |
|
36 | 35 | rspccv | |
37 | 34 36 | syl | |
38 | 37 | imp | |
39 | 38 | adantrl | |
40 | suprub | |
|
41 | 12 40 | sylan | |
42 | 41 | adantrr | |
43 | suprub | |
|
44 | 19 43 | sylan | |
45 | 44 | adantrl | |
46 | 15 18 22 25 32 39 42 45 | lemul12ad | |
47 | 46 | ex | |
48 | breq1 | |
|
49 | 48 | biimprcd | |
50 | 47 49 | syl6 | |
51 | 50 | rexlimdvv | |
52 | 11 51 | biimtrid | |
53 | 52 | ralrimiv | |