Description: Lemma for supmul . (Contributed by Mario Carneiro, 5-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | supmul.1 | |
|
supmul.2 | |
||
Assertion | supmullem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmul.1 | |
|
2 | supmul.2 | |
|
3 | vex | |
|
4 | oveq1 | |
|
5 | 4 | eqeq2d | |
6 | 5 | rexbidv | |
7 | 6 | cbvrexvw | |
8 | eqeq1 | |
|
9 | 8 | 2rexbidv | |
10 | 7 9 | bitrid | |
11 | 3 10 1 | elab2 | |
12 | 2 | simp2bi | |
13 | 12 | simp1d | |
14 | 13 | sseld | |
15 | 2 | simp3bi | |
16 | 15 | simp1d | |
17 | 16 | sseld | |
18 | 14 17 | anim12d | |
19 | remulcl | |
|
20 | 18 19 | syl6 | |
21 | eleq1a | |
|
22 | 20 21 | syl6 | |
23 | 22 | rexlimdvv | |
24 | 11 23 | biimtrid | |
25 | 24 | ssrdv | |
26 | 12 | simp2d | |
27 | 15 | simp2d | |
28 | ovex | |
|
29 | 28 | isseti | |
30 | 29 | rgenw | |
31 | r19.2z | |
|
32 | 27 30 31 | sylancl | |
33 | rexcom4 | |
|
34 | 32 33 | sylib | |
35 | 34 | ralrimivw | |
36 | r19.2z | |
|
37 | 26 35 36 | syl2anc | |
38 | rexcom4 | |
|
39 | 37 38 | sylib | |
40 | n0 | |
|
41 | 11 | exbii | |
42 | 40 41 | bitri | |
43 | 39 42 | sylibr | |
44 | suprcl | |
|
45 | 12 44 | syl | |
46 | suprcl | |
|
47 | 15 46 | syl | |
48 | 45 47 | remulcld | |
49 | 1 2 | supmullem1 | |
50 | brralrspcev | |
|
51 | 48 49 50 | syl2anc | |
52 | 25 43 51 | 3jca | |