Metamath Proof Explorer


Theorem supmullem2

Description: Lemma for supmul . (Contributed by Mario Carneiro, 5-Jul-2013)

Ref Expression
Hypotheses supmul.1 C=z|vAbBz=vb
supmul.2 φxA0xxB0xAAxyAyxBBxyByx
Assertion supmullem2 φCCxwCwx

Proof

Step Hyp Ref Expression
1 supmul.1 C=z|vAbBz=vb
2 supmul.2 φxA0xxB0xAAxyAyxBBxyByx
3 vex wV
4 oveq1 v=avb=ab
5 4 eqeq2d v=az=vbz=ab
6 5 rexbidv v=abBz=vbbBz=ab
7 6 cbvrexvw vAbBz=vbaAbBz=ab
8 eqeq1 z=wz=abw=ab
9 8 2rexbidv z=waAbBz=abaAbBw=ab
10 7 9 bitrid z=wvAbBz=vbaAbBw=ab
11 3 10 1 elab2 wCaAbBw=ab
12 2 simp2bi φAAxyAyx
13 12 simp1d φA
14 13 sseld φaAa
15 2 simp3bi φBBxyByx
16 15 simp1d φB
17 16 sseld φbBb
18 14 17 anim12d φaAbBab
19 remulcl abab
20 18 19 syl6 φaAbBab
21 eleq1a abw=abw
22 20 21 syl6 φaAbBw=abw
23 22 rexlimdvv φaAbBw=abw
24 11 23 biimtrid φwCw
25 24 ssrdv φC
26 12 simp2d φA
27 15 simp2d φB
28 ovex abV
29 28 isseti ww=ab
30 29 rgenw bBww=ab
31 r19.2z BbBww=abbBww=ab
32 27 30 31 sylancl φbBww=ab
33 rexcom4 bBww=abwbBw=ab
34 32 33 sylib φwbBw=ab
35 34 ralrimivw φaAwbBw=ab
36 r19.2z AaAwbBw=abaAwbBw=ab
37 26 35 36 syl2anc φaAwbBw=ab
38 rexcom4 aAwbBw=abwaAbBw=ab
39 37 38 sylib φwaAbBw=ab
40 n0 CwwC
41 11 exbii wwCwaAbBw=ab
42 40 41 bitri CwaAbBw=ab
43 39 42 sylibr φC
44 suprcl AAxyAyxsupA<
45 12 44 syl φsupA<
46 suprcl BBxyByxsupB<
47 15 46 syl φsupB<
48 45 47 remulcld φsupA<supB<
49 1 2 supmullem1 φwCwsupA<supB<
50 brralrspcev supA<supB<wCwsupA<supB<xwCwx
51 48 49 50 syl2anc φxwCwx
52 25 43 51 3jca φCCxwCwx