Metamath Proof Explorer


Theorem supmullem1

Description: Lemma for supmul . (Contributed by Mario Carneiro, 5-Jul-2013)

Ref Expression
Hypotheses supmul.1 𝐶 = { 𝑧 ∣ ∃ 𝑣𝐴𝑏𝐵 𝑧 = ( 𝑣 · 𝑏 ) }
supmul.2 ( 𝜑 ↔ ( ( ∀ 𝑥𝐴 0 ≤ 𝑥 ∧ ∀ 𝑥𝐵 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑦𝑥 ) ) )
Assertion supmullem1 ( 𝜑 → ∀ 𝑤𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) )

Proof

Step Hyp Ref Expression
1 supmul.1 𝐶 = { 𝑧 ∣ ∃ 𝑣𝐴𝑏𝐵 𝑧 = ( 𝑣 · 𝑏 ) }
2 supmul.2 ( 𝜑 ↔ ( ( ∀ 𝑥𝐴 0 ≤ 𝑥 ∧ ∀ 𝑥𝐵 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑦𝑥 ) ) )
3 vex 𝑤 ∈ V
4 oveq1 ( 𝑣 = 𝑎 → ( 𝑣 · 𝑏 ) = ( 𝑎 · 𝑏 ) )
5 4 eqeq2d ( 𝑣 = 𝑎 → ( 𝑧 = ( 𝑣 · 𝑏 ) ↔ 𝑧 = ( 𝑎 · 𝑏 ) ) )
6 5 rexbidv ( 𝑣 = 𝑎 → ( ∃ 𝑏𝐵 𝑧 = ( 𝑣 · 𝑏 ) ↔ ∃ 𝑏𝐵 𝑧 = ( 𝑎 · 𝑏 ) ) )
7 6 cbvrexvw ( ∃ 𝑣𝐴𝑏𝐵 𝑧 = ( 𝑣 · 𝑏 ) ↔ ∃ 𝑎𝐴𝑏𝐵 𝑧 = ( 𝑎 · 𝑏 ) )
8 eqeq1 ( 𝑧 = 𝑤 → ( 𝑧 = ( 𝑎 · 𝑏 ) ↔ 𝑤 = ( 𝑎 · 𝑏 ) ) )
9 8 2rexbidv ( 𝑧 = 𝑤 → ( ∃ 𝑎𝐴𝑏𝐵 𝑧 = ( 𝑎 · 𝑏 ) ↔ ∃ 𝑎𝐴𝑏𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) )
10 7 9 syl5bb ( 𝑧 = 𝑤 → ( ∃ 𝑣𝐴𝑏𝐵 𝑧 = ( 𝑣 · 𝑏 ) ↔ ∃ 𝑎𝐴𝑏𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) )
11 3 10 1 elab2 ( 𝑤𝐶 ↔ ∃ 𝑎𝐴𝑏𝐵 𝑤 = ( 𝑎 · 𝑏 ) )
12 2 simp2bi ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) )
13 12 simp1d ( 𝜑𝐴 ⊆ ℝ )
14 13 sselda ( ( 𝜑𝑎𝐴 ) → 𝑎 ∈ ℝ )
15 14 adantrr ( ( 𝜑 ∧ ( 𝑎𝐴𝑏𝐵 ) ) → 𝑎 ∈ ℝ )
16 suprcl ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ )
17 12 16 syl ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ℝ )
18 17 adantr ( ( 𝜑 ∧ ( 𝑎𝐴𝑏𝐵 ) ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ )
19 2 simp3bi ( 𝜑 → ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑦𝑥 ) )
20 19 simp1d ( 𝜑𝐵 ⊆ ℝ )
21 20 sselda ( ( 𝜑𝑏𝐵 ) → 𝑏 ∈ ℝ )
22 21 adantrl ( ( 𝜑 ∧ ( 𝑎𝐴𝑏𝐵 ) ) → 𝑏 ∈ ℝ )
23 suprcl ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑦𝑥 ) → sup ( 𝐵 , ℝ , < ) ∈ ℝ )
24 19 23 syl ( 𝜑 → sup ( 𝐵 , ℝ , < ) ∈ ℝ )
25 24 adantr ( ( 𝜑 ∧ ( 𝑎𝐴𝑏𝐵 ) ) → sup ( 𝐵 , ℝ , < ) ∈ ℝ )
26 simp1l ( ( ( ∀ 𝑥𝐴 0 ≤ 𝑥 ∧ ∀ 𝑥𝐵 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑦𝑥 ) ) → ∀ 𝑥𝐴 0 ≤ 𝑥 )
27 2 26 sylbi ( 𝜑 → ∀ 𝑥𝐴 0 ≤ 𝑥 )
28 breq2 ( 𝑥 = 𝑎 → ( 0 ≤ 𝑥 ↔ 0 ≤ 𝑎 ) )
29 28 rspccv ( ∀ 𝑥𝐴 0 ≤ 𝑥 → ( 𝑎𝐴 → 0 ≤ 𝑎 ) )
30 27 29 syl ( 𝜑 → ( 𝑎𝐴 → 0 ≤ 𝑎 ) )
31 30 imp ( ( 𝜑𝑎𝐴 ) → 0 ≤ 𝑎 )
32 31 adantrr ( ( 𝜑 ∧ ( 𝑎𝐴𝑏𝐵 ) ) → 0 ≤ 𝑎 )
33 simp1r ( ( ( ∀ 𝑥𝐴 0 ≤ 𝑥 ∧ ∀ 𝑥𝐵 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑦𝑥 ) ) → ∀ 𝑥𝐵 0 ≤ 𝑥 )
34 2 33 sylbi ( 𝜑 → ∀ 𝑥𝐵 0 ≤ 𝑥 )
35 breq2 ( 𝑥 = 𝑏 → ( 0 ≤ 𝑥 ↔ 0 ≤ 𝑏 ) )
36 35 rspccv ( ∀ 𝑥𝐵 0 ≤ 𝑥 → ( 𝑏𝐵 → 0 ≤ 𝑏 ) )
37 34 36 syl ( 𝜑 → ( 𝑏𝐵 → 0 ≤ 𝑏 ) )
38 37 imp ( ( 𝜑𝑏𝐵 ) → 0 ≤ 𝑏 )
39 38 adantrl ( ( 𝜑 ∧ ( 𝑎𝐴𝑏𝐵 ) ) → 0 ≤ 𝑏 )
40 suprub ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝑎𝐴 ) → 𝑎 ≤ sup ( 𝐴 , ℝ , < ) )
41 12 40 sylan ( ( 𝜑𝑎𝐴 ) → 𝑎 ≤ sup ( 𝐴 , ℝ , < ) )
42 41 adantrr ( ( 𝜑 ∧ ( 𝑎𝐴𝑏𝐵 ) ) → 𝑎 ≤ sup ( 𝐴 , ℝ , < ) )
43 suprub ( ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑦𝑥 ) ∧ 𝑏𝐵 ) → 𝑏 ≤ sup ( 𝐵 , ℝ , < ) )
44 19 43 sylan ( ( 𝜑𝑏𝐵 ) → 𝑏 ≤ sup ( 𝐵 , ℝ , < ) )
45 44 adantrl ( ( 𝜑 ∧ ( 𝑎𝐴𝑏𝐵 ) ) → 𝑏 ≤ sup ( 𝐵 , ℝ , < ) )
46 15 18 22 25 32 39 42 45 lemul12ad ( ( 𝜑 ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ( 𝑎 · 𝑏 ) ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) )
47 46 ex ( 𝜑 → ( ( 𝑎𝐴𝑏𝐵 ) → ( 𝑎 · 𝑏 ) ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) )
48 breq1 ( 𝑤 = ( 𝑎 · 𝑏 ) → ( 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ↔ ( 𝑎 · 𝑏 ) ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) )
49 48 biimprcd ( ( 𝑎 · 𝑏 ) ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) → ( 𝑤 = ( 𝑎 · 𝑏 ) → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) )
50 47 49 syl6 ( 𝜑 → ( ( 𝑎𝐴𝑏𝐵 ) → ( 𝑤 = ( 𝑎 · 𝑏 ) → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) ) )
51 50 rexlimdvv ( 𝜑 → ( ∃ 𝑎𝐴𝑏𝐵 𝑤 = ( 𝑎 · 𝑏 ) → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) )
52 11 51 syl5bi ( 𝜑 → ( 𝑤𝐶𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) )
53 52 ralrimiv ( 𝜑 → ∀ 𝑤𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) )