| Step | Hyp | Ref | Expression | 
						
							| 1 |  | supmul.1 | ⊢ 𝐶  =  { 𝑧  ∣  ∃ 𝑣  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑣  ·  𝑏 ) } | 
						
							| 2 |  | supmul.2 | ⊢ ( 𝜑  ↔  ( ( ∀ 𝑥  ∈  𝐴 0  ≤  𝑥  ∧  ∀ 𝑥  ∈  𝐵 0  ≤  𝑥 )  ∧  ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  ∧  ( 𝐵  ⊆  ℝ  ∧  𝐵  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐵 𝑦  ≤  𝑥 ) ) ) | 
						
							| 3 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 4 |  | oveq1 | ⊢ ( 𝑣  =  𝑎  →  ( 𝑣  ·  𝑏 )  =  ( 𝑎  ·  𝑏 ) ) | 
						
							| 5 | 4 | eqeq2d | ⊢ ( 𝑣  =  𝑎  →  ( 𝑧  =  ( 𝑣  ·  𝑏 )  ↔  𝑧  =  ( 𝑎  ·  𝑏 ) ) ) | 
						
							| 6 | 5 | rexbidv | ⊢ ( 𝑣  =  𝑎  →  ( ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑣  ·  𝑏 )  ↔  ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  ·  𝑏 ) ) ) | 
						
							| 7 | 6 | cbvrexvw | ⊢ ( ∃ 𝑣  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑣  ·  𝑏 )  ↔  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  ·  𝑏 ) ) | 
						
							| 8 |  | eqeq1 | ⊢ ( 𝑧  =  𝑤  →  ( 𝑧  =  ( 𝑎  ·  𝑏 )  ↔  𝑤  =  ( 𝑎  ·  𝑏 ) ) ) | 
						
							| 9 | 8 | 2rexbidv | ⊢ ( 𝑧  =  𝑤  →  ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  ·  𝑏 )  ↔  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑤  =  ( 𝑎  ·  𝑏 ) ) ) | 
						
							| 10 | 7 9 | bitrid | ⊢ ( 𝑧  =  𝑤  →  ( ∃ 𝑣  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑣  ·  𝑏 )  ↔  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑤  =  ( 𝑎  ·  𝑏 ) ) ) | 
						
							| 11 | 3 10 1 | elab2 | ⊢ ( 𝑤  ∈  𝐶  ↔  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑤  =  ( 𝑎  ·  𝑏 ) ) | 
						
							| 12 | 2 | simp2bi | ⊢ ( 𝜑  →  ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 ) ) | 
						
							| 13 | 12 | simp1d | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 14 | 13 | sselda | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐴 )  →  𝑎  ∈  ℝ ) | 
						
							| 15 | 14 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  𝑎  ∈  ℝ ) | 
						
							| 16 |  | suprcl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 17 | 12 16 | syl | ⊢ ( 𝜑  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 19 | 2 | simp3bi | ⊢ ( 𝜑  →  ( 𝐵  ⊆  ℝ  ∧  𝐵  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐵 𝑦  ≤  𝑥 ) ) | 
						
							| 20 | 19 | simp1d | ⊢ ( 𝜑  →  𝐵  ⊆  ℝ ) | 
						
							| 21 | 20 | sselda | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  𝑏  ∈  ℝ ) | 
						
							| 22 | 21 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  𝑏  ∈  ℝ ) | 
						
							| 23 |  | suprcl | ⊢ ( ( 𝐵  ⊆  ℝ  ∧  𝐵  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐵 𝑦  ≤  𝑥 )  →  sup ( 𝐵 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 24 | 19 23 | syl | ⊢ ( 𝜑  →  sup ( 𝐵 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  sup ( 𝐵 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 26 |  | simp1l | ⊢ ( ( ( ∀ 𝑥  ∈  𝐴 0  ≤  𝑥  ∧  ∀ 𝑥  ∈  𝐵 0  ≤  𝑥 )  ∧  ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  ∧  ( 𝐵  ⊆  ℝ  ∧  𝐵  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐵 𝑦  ≤  𝑥 ) )  →  ∀ 𝑥  ∈  𝐴 0  ≤  𝑥 ) | 
						
							| 27 | 2 26 | sylbi | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 0  ≤  𝑥 ) | 
						
							| 28 |  | breq2 | ⊢ ( 𝑥  =  𝑎  →  ( 0  ≤  𝑥  ↔  0  ≤  𝑎 ) ) | 
						
							| 29 | 28 | rspccv | ⊢ ( ∀ 𝑥  ∈  𝐴 0  ≤  𝑥  →  ( 𝑎  ∈  𝐴  →  0  ≤  𝑎 ) ) | 
						
							| 30 | 27 29 | syl | ⊢ ( 𝜑  →  ( 𝑎  ∈  𝐴  →  0  ≤  𝑎 ) ) | 
						
							| 31 | 30 | imp | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐴 )  →  0  ≤  𝑎 ) | 
						
							| 32 | 31 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  0  ≤  𝑎 ) | 
						
							| 33 |  | simp1r | ⊢ ( ( ( ∀ 𝑥  ∈  𝐴 0  ≤  𝑥  ∧  ∀ 𝑥  ∈  𝐵 0  ≤  𝑥 )  ∧  ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  ∧  ( 𝐵  ⊆  ℝ  ∧  𝐵  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐵 𝑦  ≤  𝑥 ) )  →  ∀ 𝑥  ∈  𝐵 0  ≤  𝑥 ) | 
						
							| 34 | 2 33 | sylbi | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 0  ≤  𝑥 ) | 
						
							| 35 |  | breq2 | ⊢ ( 𝑥  =  𝑏  →  ( 0  ≤  𝑥  ↔  0  ≤  𝑏 ) ) | 
						
							| 36 | 35 | rspccv | ⊢ ( ∀ 𝑥  ∈  𝐵 0  ≤  𝑥  →  ( 𝑏  ∈  𝐵  →  0  ≤  𝑏 ) ) | 
						
							| 37 | 34 36 | syl | ⊢ ( 𝜑  →  ( 𝑏  ∈  𝐵  →  0  ≤  𝑏 ) ) | 
						
							| 38 | 37 | imp | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  0  ≤  𝑏 ) | 
						
							| 39 | 38 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  0  ≤  𝑏 ) | 
						
							| 40 |  | suprub | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  ∧  𝑎  ∈  𝐴 )  →  𝑎  ≤  sup ( 𝐴 ,  ℝ ,   <  ) ) | 
						
							| 41 | 12 40 | sylan | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐴 )  →  𝑎  ≤  sup ( 𝐴 ,  ℝ ,   <  ) ) | 
						
							| 42 | 41 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  𝑎  ≤  sup ( 𝐴 ,  ℝ ,   <  ) ) | 
						
							| 43 |  | suprub | ⊢ ( ( ( 𝐵  ⊆  ℝ  ∧  𝐵  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐵 𝑦  ≤  𝑥 )  ∧  𝑏  ∈  𝐵 )  →  𝑏  ≤  sup ( 𝐵 ,  ℝ ,   <  ) ) | 
						
							| 44 | 19 43 | sylan | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  𝑏  ≤  sup ( 𝐵 ,  ℝ ,   <  ) ) | 
						
							| 45 | 44 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  𝑏  ≤  sup ( 𝐵 ,  ℝ ,   <  ) ) | 
						
							| 46 | 15 18 22 25 32 39 42 45 | lemul12ad | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎  ·  𝑏 )  ≤  ( sup ( 𝐴 ,  ℝ ,   <  )  ·  sup ( 𝐵 ,  ℝ ,   <  ) ) ) | 
						
							| 47 | 46 | ex | ⊢ ( 𝜑  →  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎  ·  𝑏 )  ≤  ( sup ( 𝐴 ,  ℝ ,   <  )  ·  sup ( 𝐵 ,  ℝ ,   <  ) ) ) ) | 
						
							| 48 |  | breq1 | ⊢ ( 𝑤  =  ( 𝑎  ·  𝑏 )  →  ( 𝑤  ≤  ( sup ( 𝐴 ,  ℝ ,   <  )  ·  sup ( 𝐵 ,  ℝ ,   <  ) )  ↔  ( 𝑎  ·  𝑏 )  ≤  ( sup ( 𝐴 ,  ℝ ,   <  )  ·  sup ( 𝐵 ,  ℝ ,   <  ) ) ) ) | 
						
							| 49 | 48 | biimprcd | ⊢ ( ( 𝑎  ·  𝑏 )  ≤  ( sup ( 𝐴 ,  ℝ ,   <  )  ·  sup ( 𝐵 ,  ℝ ,   <  ) )  →  ( 𝑤  =  ( 𝑎  ·  𝑏 )  →  𝑤  ≤  ( sup ( 𝐴 ,  ℝ ,   <  )  ·  sup ( 𝐵 ,  ℝ ,   <  ) ) ) ) | 
						
							| 50 | 47 49 | syl6 | ⊢ ( 𝜑  →  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  →  ( 𝑤  =  ( 𝑎  ·  𝑏 )  →  𝑤  ≤  ( sup ( 𝐴 ,  ℝ ,   <  )  ·  sup ( 𝐵 ,  ℝ ,   <  ) ) ) ) ) | 
						
							| 51 | 50 | rexlimdvv | ⊢ ( 𝜑  →  ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑤  =  ( 𝑎  ·  𝑏 )  →  𝑤  ≤  ( sup ( 𝐴 ,  ℝ ,   <  )  ·  sup ( 𝐵 ,  ℝ ,   <  ) ) ) ) | 
						
							| 52 | 11 51 | biimtrid | ⊢ ( 𝜑  →  ( 𝑤  ∈  𝐶  →  𝑤  ≤  ( sup ( 𝐴 ,  ℝ ,   <  )  ·  sup ( 𝐵 ,  ℝ ,   <  ) ) ) ) | 
						
							| 53 | 52 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  𝐶 𝑤  ≤  ( sup ( 𝐴 ,  ℝ ,   <  )  ·  sup ( 𝐵 ,  ℝ ,   <  ) ) ) |