Metamath Proof Explorer


Theorem lemul12ad

Description: Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses ltp1d.1 φA
divgt0d.2 φB
lemul1ad.3 φC
ltmul12ad.3 φD
lemul12ad.4 φ0A
lemul12ad.5 φ0C
lemul12ad.6 φAB
lemul12ad.7 φCD
Assertion lemul12ad φACBD

Proof

Step Hyp Ref Expression
1 ltp1d.1 φA
2 divgt0d.2 φB
3 lemul1ad.3 φC
4 ltmul12ad.3 φD
5 lemul12ad.4 φ0A
6 lemul12ad.5 φ0C
7 lemul12ad.6 φAB
8 lemul12ad.7 φCD
9 1 5 jca φA0A
10 3 6 jca φC0C
11 lemul12a A0ABC0CDABCDACBD
12 9 2 10 4 11 syl22anc φABCDACBD
13 7 8 12 mp2and φACBD