Metamath Proof Explorer


Theorem lemul12a

Description: Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008)

Ref Expression
Assertion lemul12a A0ABC0CDABCDACBD

Proof

Step Hyp Ref Expression
1 simpll A0ABC0CDABCDA0AB
2 simpll C0CDC
3 2 ad2antlr A0ABC0CDABCDC
4 simplrr A0ABC0CDABCDD
5 0re 0
6 letr 0CD0CCD0D
7 5 6 mp3an1 CD0CCD0D
8 7 exp4b CD0CCD0D
9 8 com23 C0CDCD0D
10 9 imp41 C0CDCD0D
11 10 ad2ant2l A0ABC0CDABCD0D
12 4 11 jca A0ABC0CDABCDD0D
13 1 3 12 jca32 A0ABC0CDABCDA0ABCD0D
14 simpr A0ABC0CDABCDABCD
15 lemul12b A0ABCD0DABCDACBD
16 13 14 15 sylc A0ABC0CDABCDACBD
17 16 ex A0ABC0CDABCDACBD